Министерство образования и науки Российской Федерации Южно-Уральский государственный университет Химический факультет

543(07) Д182

Е.И. Данилина, И.В. Иняев

РАСЧЕТЫ В ТИТРИМЕТРИЧЕСКОМ АНАЛИЗЕ

Учебное пособие

Челябинск Издательский центр ЮУрГУ 2014

Одобрено

учебно-методической комиссией химического факультета

Рецензенты:

Тюрин А.Г., д-р хим. наук, профессор, зав. кафедрой физической и аналитической химии Челябинского государственного университета;

Толчев А.В., д-р хим. наук, профессор кафедры химической технологии и вычислительной химии Челябинского государственного университета;

Данилина, Е.И.

Д182 Расчеты в титриметрическом анализе: учебное пособие / Е.И. Данилина, И.В. Иняев. – Челябинск: Издательский центр ЮУрГУ, 2012. – 72 с.

Учебное пособие предназначено для использования при изучении базовой дисциплины "Аналитическая химия". В нем даны правила расчета результатов химического анализа по титриметрическому методу, стандартизации и приготовления растворов. Основное внимание обращено на алгоритмы и пошаговое описание расчетов. Приведены задачи для самостоятельного решения.

1. КОНЦЕНТРАЦИИ РАСТВОРОВ И ЗАКОН ЭКВИВАЛЕНТОВ

Титрование — процесс прибавления небольшими порциями стандартного раствора реагента, называемого *титрантом*, к анализируемому раствору до того момента, когда определяемое вещество и титрант провзаимодействуют в эквивалентных количествах.

Систематизируем некоторые термины и понятия, принятые в Международной системе единиц (СИ) и необходимые при вычислениях в количественном анализе.

Моль — количество вещества, содержащее столько определенных условных частиц, сколько атомов содержится в 0,012 кг (или в 12 г) изотопа углерода 12 С. Под условными частицами понимаются как реально существующие частицы (молекулы, ионы, электроны и т.д.), так и доли таких частиц (например, 1/2 часть молекулы H_2SO_4) или их группы. Вместо термина "условная частица" используют также термины "структурный элемент", "элементарный фрагмент", "структурная единица" и др.

Применяя термин "моль", необходимо указывать, о каких именно условных частицах идет речь. Например, следует говорить: 1 моль молекул хлорида серебра, 0,1 моль ионов железа(III), 0,5 моль эквивалента перманганата калия и т.д. Количество вещества обозначают буквой п и записывают следующим образом: n(AgCl) = 1 моль, $n(Fe^{3+}) = 0,1$ моль, $n(1/5 \text{ KMnO}_4) = 0,5$ моль и т.д. (Слово "моль" после числа не склоняется.)

Молярная масса вещества X — масса 1 моль вещества. Она равна отношению массы m(X) вещества к его количеству в молях, т.е.

$$M(X) = \frac{m(X)}{n(X)}.$$

Основной единицей молярной массы является $\kappa z/моль$, но на практике чаще пользуются единицей z/моль. Например, молярные массы атомов меди, ионов водорода, молекул хлора, 1/2 молекул H_2SO_4 равны: M(Cu) = 63,54 г/моль; $M(H^+) = 1,014$ г/моль; $M(Cl_2) = 70,916$ г/моль; $M(1/2 H_2SO_4) = 49,10$ г/моль.

Для проведения расчетов в титриметрии вводят понятия эквивалента и фактора эквивалентности.

Эквивалент – некая реальная или условная частица, которая может присоединять, высвобождать или быть каким-либо другим образом эквивалентна одному иону водорода в кислотно-основных реакциях или одному электрону в окислительно-восстановительных реакциях.

Фактор эквивалентности $f_{_{3KB}}(X)$ — число, обозначающее, какая доля условной частицы вещества X реагирует (эквивалентна) с одним ионом водорода в данной кислотно-основной реакции или с одним электроном в данной окислительно-восстановительной реакции.

Таким образом, при характеристике этих понятий наиболее существенным является то, что они не являются постоянными, а зависят от типа и стехиометрии конкретной реакции. Примеры определения эквивалента и фактора эквивалентности в реакциях того или иного типа приведены далее, в разделах 2-5.

Молярная масса эквивалента вещества $M_{\text{экв}}(X)$ — масса одного моля эквивалентов этого вещества, равная произведению фактора эквивалентности $f_{\text{экв}}$ на молярную массу вещества X. Поскольку фактор эквивалентности — безразмерная величина, то единицей измерения молярной массы эквивалентов является z/моль:

$$M_{{}_{\mathsf{3KB}}}(X) = f_{{}_{\mathsf{3KB}}}(X) \cdot M(X).$$

Необходимо различать понятия "моль" и "эквивалент" и, соответственно, молярную массу вещества M(X) и молярную массу эквивалента вещества $M_{\text{экв}}(X)$ для правильного выражения концентрации растворов.

Концентрацией называется величина, показывающая, сколько растворенного вещества содержится в определенной массе раствора (или растворено в определенном объеме растворителя).

Концентрация раствора может быть выражена различными способами. Приведем только самые распространенные, используемые для расчета результатов (а также при вспомогательных расчетах) в аналитических определениях.

В практике аналитической химии концентрацию растворов часто выражают через молярность, или молярную концентрацию; она выражается числом *молей* растворенного вещества в 1 л раствора (моль/л, допускается обозначение "М": например, C(X) = 0.02 моль/л = 0.02 М). Раствор, содержащий 1 моль вещества X в 1 л, называется одномолярным; соответственно 0.1 М раствор называется децимолярным, 0.01 М раствор — сантимолярным, 0.001 М раствор — миллимолярным. Таким образом, выше приведен пример двусантимолярного раствора. С количеством вещества в молях эта концентрация связана соотношением:

$$C = \frac{n}{V}$$
 моль / л.

Отношение количества вещества э*квивалента* в растворе к объему раствора выражает молярную концентрацию эквивалента. Выражается эта концентрация также в *моль/л*, но в записи концентрации необходимо представлять очевидным образом, что речь идет о количестве молей эквивалента на литр раствора. Например: $C(1/2 \text{ H}_2\text{SO}_3) = 0,1000 \text{ M}$ или 0,1000 M ($1/2 \text{ H}_2\text{SO}_3$); $C(1/6 \text{ K}_2\text{Cr}_2\text{O}_7) = 0,0500 \text{ M}$ или 0,0500 M ($1/6 \text{ K}_2\text{Cr}_2\text{O}_7$)*.

Если $f_{_{9KB}}(X) = 1$, проще употреблять понятие молярной концентрации вместо молярной концентрации эквивалента, так как никаких преимуществ количество молей эквивалента перед количеством молей в этом случае не имеет.

^{*} Более старый термин — *нормальность*; он в настоящее время не рекомендуется к употреблению. В качестве единицы измерения использовали количество грамм-эквивалентов вещества в 1 л раствора (Γ -экв/л); по смыслу то же самое, что число молей эквивалентов. Допускалось вместо этого обозначения сокращение "н." (с точкой). Например: нормальность серной кислоты $N(H_2SO_4) = 1$ Γ -экв/л = 1 н.; это означало 1 моль эквивалентов (1/2 молекулы H_2SO_4) в 1 л. Раствор, содержащий 1 моль эквивалентов вещества в 1 л, называли однонормальным раствором этого вещества; для выражения меньших концентраций использовали термины: децинормальный, сантинормальный, миллинормальный. Эти обозначения можно еще встретить в учебной и научной литературе, следует иметь о них представление.

Поскольку довольно часто приходится выражать результаты анализа не в молях эквивалента, а в единицах массы (граммах или миллиграммах), используют и другие способы выражения концентрации.

Так, при количественном определении вещества методом титриметрического анализа часто используют растворы определенной концентрации, которую можно выразить в числе граммов этого вещества, содержащихся в 1 миллилитре данного раствора. Такую концентрацию называют титром.

$$T(X) = \frac{m(X)}{V} (\Gamma / M \pi).$$

В серийных анализах для расчета массы определяемого вещества традиционно используют такой способ выражения концентрации, как условный титр рабочего раствора, или титр раствора по определяемому веществу. Это отношение массы определяемого вещества (m_X) к эквивалентному объему рабочего раствора реагента $A(V_A)$:

$$T(A/X) = \frac{m(X)}{V_{\Delta}} (\Gamma/M\pi).$$

Другими словами, $T_{A/X}$ показывает, какая масса (в граммах) анализируемого вещества X реагирует с 1 миллилитром рабочего раствора вещества A.

Взаимосвязь молярной концентрации эквивалента (моль/л) произвольно взятого раствора с титром (Γ /мл) того же раствора можно установить, учитывая молярную массу эквивалента определяемого вещества:

$$T(X) = \frac{C(X) \cdot M_{_{3KB}}(X)}{1000}; T(A/X) = \frac{C(A) \cdot M_{_{3KB}}(X)}{1000}.$$

Представим себе обыденную работу в аналитической лаборатории, где используется титриметрический метод анализа, например, для определения окисляемости воды. Методика определения не меняется день ото дня, и аналитики давно запомнили, какой массе кислорода в миллиграммах эквивалентен 1 мл рабочего раствора 0,0100 М (1/5 КМпО₄). Именно эта (округленная) молярная концентрация эквивалента записана в аналитической прописи. Однако раствор перманганата калия неустойчив, и его необходимо стандартизовать; таким образом, его концентрация в различные дни несколько отличается от округленной. Для удобства расчетов раствор титранта характеризуют молярной концентрацией эквивалента с поправочным коэффициентом. Поправочный коэффициент К равен отношению истинной молярной концентрации эквивалента Сист рабочего раствора к округленной табличной молярной концентрации эквивалента $C_{\text{табп}}$, для которой можно заранее рассчитать, какой массе определяемого вещества соответствует 1 мл рабочего раствора. При расчете достаточно эту теоретически известную массу умножить на поправочный коэффициент, найденный при стандартизации. Этот способ очень удобен для серийных определений и широко используется в цеховых и заводских лабораториях.

$$K = \frac{C_{\text{ист}}}{C_{\text{табл}}}.$$

На практике при определении различных веществ часто возникает необходимость добавлять в систему различные вспомогательные растворы для создания необходимой среды, проведения реакции замещения, предшествующей реакции титрования и т.п. Как правило, нет необходимости готовить эти растворы с высокой точностью, как стандартные растворы, и довольно часто их концентрация выражается в виде массовой доли (процентной концентрации).

Массовая доля растворенного вещества (ω) — отношение массы данного вещества к общей массе раствора. Это отношение может выражаться в долях, но чаще умножается на 100%, что представляет собой процентную концентрацию вещества в растворе:

$$\omega = \frac{m_{p.B.}}{m_{p-pa}} 100\%$$
.

В справочниках, например, "Справочнике по аналитической химии" Ю.Ю. Лурье [3] приводятся формулы для перехода от одних выражений концентрации к другим, однако, помня химический смысл каждого способа выражения концентрации, легко произвести соответствующий пересчет.

Точная концентрация необходима в титриметрическом анализе для определения содержания анализируемых веществ. Если точно измерить объемы растворов двух взаимодействующих веществ, то, зная концентрацию одного из них, можно найти концентрацию другого. Раствор, с помощью которого определяют концентрацию или количество другого вещества, называется титрованным, т.е. раствором с известным титром, или стандартным.

Определение концентрации растворов основано на законе эквивалентов: по окончании реакции число эквивалентов одного реагента равно числу эквивалентов другого реагента:

$$n_1 = n_2$$
.

Обязательно следует помнить, что равенство касается не числа молей, а именно эквивалентов. Величина эквивалента (фактор эквивалентности) зависит от конкретной химической реакции, в которую вступает вещество, а число эквивалентов определяется условиями задачи. Число эквивалентов можно найти, во-первых, по массе реагента: $n = m / M_{\text{экв}}$, а во-вторых, из определения молярной концентрации эквивалента: n = CV.

Чаще всего при титриметрических определениях раствор определяемого вещества неизвестной молярной концентрации эквивалента C_1 , взятый в объеме V_1 , титруют рабочим раствором известной молярной концентрации эквивалента $C_{\text{раб}}$. Обозначим объем рабочего раствора титранта, израсходованного на титрование, $V_{\text{раб}}$. Из сказанного можно заключить, что между молярными концентрациями эквивалента и объемами этих растворов существует соотношение:

$$\frac{C_1}{C_{\text{pa6}}} = \frac{V_{\text{pa6}}}{V_1},$$

или в другой форме:

$$C_1V_1=C_{pa\delta}\cdot V_{pa\delta}.$$

Из этого соотношения можно найти неизвестную концентрацию C_1 определяемого вещества:

$$C_1 = \frac{C_{pa\delta} V_{pa\delta}}{V_1} .$$

Чаще необходимо найти на основе данных титрования массу вещества в граммах, содержащуюся в некотором объеме анализируемого раствора неизвестной концентрации. Тогда, выражая число эквивалентов определяемого вещества через его массу и молярную массу эквивалента и используя закон эквивалентов, получим:

$$\frac{m(X)}{M_{akB}(X)} = C_{pa\delta} V_{pa\delta}.$$

И поскольку объем, пошедший на титрование, измерен в миллилитрах, масса определяемого вещества в граммах составляет

$$m(X) = \frac{V_{pa\delta}C_{pa\delta}M_{_{3KB}}(X)}{1000} = \frac{V_{pa\delta}C_{pa\delta}f_{_{3KB}}M(X)}{1000}.$$

Следует различать между собой описанный подход, при котором навеску анализируемого вещества растворяют непосредственно в колбе для титрования, а затем *полностью* оттитровывают рабочим (титрованным) раствором — этот способ называется титрованием по методу отдельных навесок, и титрование по методу пипетирования. В данном случае навеску анализируемого вещества растворяют в мерной колбе известного объема, отбирают с помощью пипетки *часть* этого раствора (она называется аликвотной частью, или просто аликвотой), и уже эту аликвоту титруют рабочим раствором. Тогда общая масса определяемого вещества больше, чем его же масса, находящаяся в аликвоте, в некоторое число раз; оно называется фактором аликвотирования.

$$\begin{split} f_{a} &= \frac{V_{\text{общ}}}{V_{a}};\\ m(X) &= \frac{V_{pa\delta}C_{pa\delta}f_{\text{9KB}}M(X)}{1000} \times f_{a}. \end{split}$$

Можно по-разному выражать концентрацию титрованного раствора, чтобы обеспечить наиболее рациональный ход расчета в задаче. Например, вычислениями посредством титра удобно пользоваться в лабораториях, где выполняют много однотипных анализов. Если известно, какой массе определяемого вещества эквивалентен 1 мл рабочего раствора, то достаточно помножить титр рабочего раствора по определяемому веществу на объем рабочего раствора, израсходованного на титрование.

$$m(X) = T(A/X) \cdot V_A$$
.

Если рабочий раствор используется для разнообразных определений, целесообразно пользоваться молярными концентрациями эквивалентов. И любую концентрацию можно умножать на безразмерный поправочный коэффициент.

Определение в титриметрическом анализе можно проводить несколькими способами (прямое, обратное, заместительное титрование).

Прямое титрование, при котором определяемый компонент непосредственно титруют подходящим титрантом, применимо при выполнении следующих требований: реакция титрования стехиометрична, протекает количественно и быстро, существует способ фиксирования точки эквивалентности.

Определение по методу замещения применяют тогда, когда определяемое вещество с титрантом не взаимодействует или их взаимодействие протекает нестехиометрично. Если добавить к определяемому веществу достаточное, часто избыточное, количество вспомогательного реагента, происходит химическая реакция, а с титрантом реагирует продукт этой вспомогательной реакции, количество которого эквивалентно количеству определяемого вещества (находящегося в недостатке). Поскольку закон эквивалентов соблюдается, то вместо полного соотношения $n_1 = n_2 = n_3$ можно использовать только равенство числа эквивалентов определяемого вещества и титранта: $n_1 = n_3$.

Обратное титрование (метод титрования по остатку) подразумевает, что к раствору определяемого вещества добавляют *точно* отмеренное количество раствора реагента, взятого в определенном избытке. После этого титруют избыток реагента подходящим рабочим раствором. Например, раствор искомого основания обрабатывают кислотой, а избыток кислоты оттитровывают стандартным раствором щелочи; или окислитель обрабатывают восстановителем, а непрореагировавший остаток восстановителя вступает в реакцию с рабочим раствором другого окислителя.

Результаты титрования находят следующим образом. Предположим, что число эквивалентов определяемого вещества n_1 . К нему добавили определенный объем реагента точно известной концентрации $C_2 \cdot V_2 = n_2$, причем $n_2 > n_1$. Когда остаток этого реагента $(n_2 - n_1)$ оттитровывают соответствующим рабочим раствором $C_3 \cdot V_3 = n_3$, в точке эквивалентности справедливо соотношение

$$n_2 - n_1 = n_3$$
.

Тогда число эквивалентов определяемого вещества

$$n_1 = n_2 - n_3$$
.

Его массу определяем по уравнению:

$$m = \frac{(C_2V_2 - C_3V_3)f_{_{9KB}}M(X)}{1000} \times f_a.$$

Конкретное аналитическое определение может быть довольно сложным. Когда определяют несколько веществ, находящихся в одном растворе, проводят вспомогательные операции по их разделению или выделению. В таких случаях надо проанализировать условие задачи и определить, что именно титруется в каждом отдельном случае, смесь веществ или индивидуальное вещество, и какое конкретно; а также каким методом — прямым или обратным. Таким образом, задача разбивается на ряд элементарных заданий, каждое из которых решается типичным способом.

2. КИСЛОТНО-ОСНОВНОЕ ТИТРОВАНИЕ

1.1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ И ПРИМЕРЫ РЕШЕНИЯ

Эквивалент кислоты или основания — такая условная частица вещества, которая в данной кислотно-основной реакции высвобождает один ион водорода, или соединяется с ним, или каким-либо образом эквивалентна ему. Соответственно, фактор эквивалентности — число, показывающее, какая доля реальной частицы вещества (молекулы, иона) эквивалентна одному иону водорода в кислотно-основной реакции.

Например, взаимодействие гидроксида натрия с серной кислотой

$$2 \text{ NaOH} + \text{H}_2 \text{SO}_4 = \text{Na}_2 \text{SO}_4 + 2 \text{ H}_2 \text{O}$$

можно переписать с дробными коэффициентами

$$NaOH + 1/2 H_2SO_4 = 1/2 Na_2SO_4 + H_2O.$$

В этом случае легче заметить, что одна молекула гидроксида натрия NaOH эквивалентна одному иону водорода, поскольку один гидроксил-ион взаимодействует именно с одним ионом H^+ с образованием воды:

$$H^{+} + OH^{-} = H_{2}O.$$

Соответственно, фактор эквивалентности гидроксида натрия $f_{3KB}(NaOH) = 1$.

В то время как для описанной реакции эквивалент (условная частица) серной кислоты будет соответствовать половине реальной молекулы (1/2 H_2SO_4); и фактор эквивалентности серной кислоты $f_{3KB}(H_2SO_4) = 1/2$.

Следует обращать особое внимание на то, при какой стехиометрии реагирующих кислот и оснований достигнута точка эквивалентности, поскольку и эквивалент, и фактор эквивалентности зависят от конкретной реакции. Например, при титровании фосфорной кислоты щелочью по метиловому оранжевому индикатор меняет цвет, когда завершается реакция

$$H_3PO_4 + KOH = KH_2PO_4 + H_2O (f_{9KB}(H_3PO_4) = 1);$$

а при титровании по фенолфталеину смена окраски индикатора соответствует реакции

$$H_3PO_4 + 2 KOH = K_2HPO_4 + 2 H_2O (f_{3KB}(H_3PO_4) = 1/2).$$

В то время как при бездумном применении понятия эквивалента студенты делают элементарную ошибку, считая за эквивалент фосфорной кислоты условную частицу $1/3~H_3PO_4$ всегда и при любых условиях, только на том основании, что в ее молекуле три атома водорода, независимо от того, сколько из них реально участвуют в реакции кислотно-основного взаимодействия.

Зная формулу эквивалента, можно рассчитать его молярную массу.

Пример 2.1. Определить молярную массу эквивалента Na₃PO₄ при титровании стандартным раствором HCl с индикатором метиловым оранжевым.

Решение. При титровании соли Na₃PO₄ стандартным раствором HCl в присутствии метилового оранжевого протекает следующая реакция:

$$Na_3PO_4 + 2HCl = NaH_2PO_4 + 2NaCl.$$

Как можно видеть, 1 моль Na_3PO_4 соответствует 2 ионам водорода в данной реакции, следовательно, 1/2 Na_3PO_4 – условная частица, химически эквивалент-

ная 1 иону H^+ , тогда $f_{_{9KB}}(Na_3PO_4) = 1/2$, а молярная масса эквивалента фосфата натрия в данном случае равна:

$$M(1/2 \text{ Na}_3 \text{PO}_4) = \frac{M(\text{Na}_3 \text{PO}_4)}{2} = \frac{163,941}{2} = 81,971 \ \ \Gamma / \text{ моль}.$$

Пользуясь понятием эквивалента, можно рассчитывать молярную концентрацию эквивалента приготовленного раствора по массе навески вещества, либо решать обратную задачу: определение навески, необходимой для приготовления рабочего раствора заданной концентрации для использования в том или ином методе титрования. Концентрацию можно задавать любым удобным для работы способом.

Пример 2.2. Рассчитать молярную концентрацию эквивалента щавелевой кислоты $H_2C_2O_4$ и титр $H_2C_2O_4$ по NaOH для раствора, приготовленного растворением 3,122 г $H_2C_2O_4$ в мерной колбе вместимостью 250,0 мл.

Решение. Щавелевая кислота титруется как двухосновная, дифференцировать ступени диссоциации в водной среде невозможно, т.к. ступенчатые константы диссоциации близки. Таким образом, эквивалент щавелевой кислоты представляет собой 1/2 $H_2C_2O_4$, с молярной массой эквивалента 63,033 г/моль.

Число молей эквивалента щавелевой кислоты:

n
$$(1/2 \text{ H}_2\text{C}_2\text{O}_4) = \text{ m} / \text{M}(1/2 \text{ H}_2\text{C}_2\text{O}_4) = 3,122 / 63,033 = 0,04953 (моль).$$
 Определяем молярную концентрацию эквивалента $\text{H}_2\text{C}_2\text{O}_4$:

$$C(1/2\,H_2C_2O_4) = \frac{n(1/2\,H_2C_2O_4)}{V} = \frac{0,04953}{0,2500} = 0,\!1981 \; (\text{моль}\,/\,\pi).$$

Найдем титр $H_2C_2O_4$ по NaOH; с учетом того, что $f_{_{9KB}}(NaOH)=1$, и справочных данных M(NaOH)=39,998 г/моль, тогда 1 мл раствора щавелевой кислоты соответствует массе едкого натра:

$$T(H_2C_2O_4/\text{NaOH}) = \frac{C(1/2H_2C_2O_4)\cdot M_{_{9KB}}(\text{NaOH})}{1000} = \frac{0,1981\cdot 39,998}{1000} = 0,007924 \ (\text{г/мл}).$$

Если известна концентрация раствора в одном каком-либо выражении, можно пересчитать ее на любое другое выражение концентрации. Например, очень легко перейти от титра вещества (г/мл) к его молярной концентрации (моль/л) или молярной концентрации эквивалента, соответствующей числу молей эквивалента в 1 л раствора.

Пример 2.3. Найти молярную концентрацию и молярную концентрацию эквивалента раствора карбоната натрия Na_2CO_3 , титр которого равен 0,00530 г/мл. Раствор предполагается использовать для установления концентрации HCl по метилоранжу.

Решение. Масса карбоната натрия в 1 л раствора:

$$m(Na_2CO_3) = 0,00530 \ \Gamma/MJI \cdot 1000 \ MJI = 5,30 \ \Gamma.$$

Число молей карбоната натрия находится, исходя из справочных данных по его молярной массе: $M(Na_2CO_3) = 106,00$ г/моль.

 $n (Na_2CO_3) = m (Na_2CO_3) / M(Na_2CO_3) = 5,30 / 106,00 = 0,0500 (моль).$ Это количество молей в 1 л раствора, т.е. $C(Na_2CO_3) = 0,0500$ моль/л.

Прежде, чем найти молярную концентрацию эквивалента, следует представлять себе, каков эквивалент и фактор эквивалентности вещества. Поскольку сказано, что титрование будет происходить по метилоранжу, то реакция:

$$Na_2CO_3 + 2 HC1 = 2 NaC1 + H_2O + CO_2$$
.

Соответственно, с одним ионом водорода взаимодействует условная частица $1/2 \text{ Na}_2\text{CO}_3$. Определяем число молей эквивалента в найденной массе вещества, находящейся в 1 л раствора:

 $n(1/2 \text{ Na}_2\text{CO}_3) = m \left(\text{Na}_2\text{CO}_3\right) / M(1/2 \text{ Na}_2\text{CO}_3) = 5,30 / 53,00 = 0,100 \text{ (моль)}.$ Таким образом, в 1 л раствора 0,100 моль эквивалента карбоната натрия; молярная концентрация эквивалента $C(1/2 \text{ Na}_2\text{CO}_3) = 0,100 \text{ моль/л}.$

При приготовлении растворов кислот довольно частым случаем является использование процентной концентрации растворов (массовой доли). Следует помнить, что для пересчета от массы раствора к его объему или наоборот необходимо знать плотность раствора. Плотности растворов наиболее распространенных кислот при различных концентрациях можно найти в "Справочнике по аналитической химии" Ю.Ю. Лурье [3].

Пример 2.4. Какова молярная концентрация 10%-го раствора HCl (плотность $\rho = 1,05 \text{ г/мл}$)?

Решение. Поскольку молярная концентрация — это число молей в 1 л раствора, найдем массу 1 л 10%-го раствора HCl:

$$m_{\text{p-pa}} = V \cdot \rho = 1000$$
 мл \cdot 1,05 г/мл = 1050 г.

Рассчитаем массу НСІ в 1050 г 10%-го раствора:

$$m_{\mbox{\tiny B}} = m_{\mbox{\tiny p-pa}} \cdot \omega \; / \; 100\% = 1050 \cdot 10\% \; / \; 100\% = 105 \; \Gamma.$$

Тогда количество вещества : n(HCl) = m / M(HCl) = 105 / 36,5 = 2,88 моль. Таким образом, C(HCl) = 2,88 моль/л. Кстати, она же и молярная концентрация эквивалента, т.к. в молекуле HCl только один ион водорода.

Пример 2.5. Какой объем 30%-го раствора H_3PO_4 ($\rho = 1,18$ г/мл) необходимо взять для приготовления 5,00 л раствора 2,00 моль/л $f_{3KB}(H_3PO_4) = 1/3$?

Решение. Рассчитаем, сколько граммов H_3PO_4 находится в 5,00 л 2,00 М раствора, помня, что по условию задачи молярная масса эквивалента составляет 1/3 молярной массы фосфорной кислоты, $M_{_{3KB}} = 32,66$ г/моль.

$$m_{p.B.} = M_{9KB} \cdot n \cdot V = 32,66 \cdot 2 \cdot 5 = 326,6 \ \Gamma.$$

Из определения массовой доли находим, сколько граммов 30%-го раствора кислоты следует взять, чтобы там содержалось 326,6 г вещества H₃PO₄:

$$m_{\text{p-pa}} = m_{\text{p.b.}} \cdot 100\%$$
 / $\omega = 326.6 \cdot 100\%$ / $30\% = 1088$ г.

Отсюда находим объем 30%-ной кислоты: $V = m/\rho = 1088 / 1,18 = 922$ мл.

Нередко в аналитической лаборатории возникает необходимость приготовить более разбавленный раствор из имеющегося раствора большей концентрации. Ничего сложного в такой задаче нет. Поскольку при разбавлении водой количество вещества А не меняется, можно записать:

$$n_1(A) = n_2(A); C_1(A) \cdot V_1(A) = C_2(A) \cdot V_2(A).$$

Это справедливо и для молярной концентрации, и для молярной концентрации эквивалента.

Пример 2.6. Приготовить 500 мл раствора серной кислоты с приблизительной молярной концентрацией эквивалента 0,10 моль/л из раствора концентрированной кислоты с плотностью 1,835 г/мл.

Решение. В задаче не дана молярная концентрация эквивалента исходного раствора серной кислоты. Однако, пользуясь "Справочником по аналитической химии" [3], можно найти молярную концентрацию раствора серной кислоты с заданной плотностью 1,835 г/мл; эта величина $C(H_2SO_4) = 17,91$ моль/л.

Серная кислота — двухосновная, сильная по обеим ступеням, которые в водном растворе не дифференцируются. Другими словами, эквивалент серной кислоты соответствует условной частице $1/2~H_2SO_4$. Отсюда молярная концентрация эквивалента серной кислоты в исходном растворе равна:

$$C(1/2 \text{ H}_2\text{SO}_4) = 2 \cdot C(\text{H}_2\text{SO}_4) = 2 \cdot 17,91 = 35,82 \text{ моль/л}.$$

В соответствии с приведенным выше выражением можно записать:

$$C_1(1/2 \text{ H}_2\text{SO}_4) \cdot V_1(\text{H}_2\text{SO}_4) = C_2(1/2 \text{ H}_2\text{SO}_4) \cdot V_2(\text{H}_2\text{SO}_4).$$

Отсюда рассчитываем:

$$V_1(H_2SO_4) = \frac{0,10 \cdot 500}{35,82} = 1,4$$
 мл.

Если титрант не относится к первичным стандартам (а если долго хранился – то и в этом случае) приготовленный раствор необходимо стандартизовать по другому веществу, вступающему с ним в химическую реакцию, если есть способ зафиксировать точку эквивалентности.

Рассмотрим пример стандартизации титранта методом отдельных навесок.

Пример 2.7. На титрование навески янтарной кислоты массой 0,1560 г израсходовано 26,00 мл раствора гидроксида калия. Определить молярную концентрацию и титр раствора гидроксида калия.

Решение. Из уравнения реакции, протекающей при титровании:

$$H_2C_4H_4O_4 + 2 \text{ KOH} = K_2C_4H_4O_4 + 2 H_2O$$

следует, что фактор эквивалентности янтарной кислоты равен 1/2, а молярная масса эквивалента $M(1/2\ H_2C_4H_4O_4)=1/2\ M\ (H_2C_4H_4O_4)=59,05\ г/моль.$

Тогда, в соответствии с законом эквивалентов,

$$n (1/2 H_2C_4H_4O_4) = n(KOH).$$

Число молей эквивалента янтарной кислоты находим, поделив ее известную массу на молярную массу эквивалента, и приравниваем числу молей эквивален-

та гидроксида калия, которое соответствует произведению молярной концентрации эквивалента на объем (в литрах).

$$\frac{m(H_2C_4H_4O_4)}{M(1/2 H_2C_4H_4O_4)} = C(KOH) \cdot V(KOH)$$

Находим молярную концентрацию эквивалента (она же молярная концентрация) КОН, поскольку все прочие величины известны:

$$C(\text{KOH}) = \frac{m(\text{H}_2\text{C}_4\text{H}_4\text{O}_4)}{M(1/2 \text{ H}_2\text{C}_4\text{H}_4\text{O}_4) \cdot \text{V(KOH)}} = \frac{0,\!1560}{59,\!05 \cdot 26,\!00 \cdot 10^{-3}} = 0,\!1016 \text{ моль/ л.}$$

Титр раствора гидроксида калия можно найти, зная его молярную массу эквивалента (в данном случае, поскольку $f_{_{9KB}} = 1$, равную молярной массе):

$$T(KOH) = \frac{C(KOH) \cdot M_{9KB}(KOH)}{1000} = \frac{0,1016 \cdot 56,11}{1000} = 0,005701 \, \text{г/мл}.$$

При стандартизации растворов по методу пипетирования следует помнить, что непосредственное титрование проводится лишь с частью (аликвотой) раствора, приготовленного по навеске, т.е. с массой вещества, меньшей, чем масса навески, на фактор аликвотирования.

Пример 2.8. Навеску свежеперекристаллизованной щавелевой кислоты $H_2C_2O_4\cdot H_2O$ массой 0,6000 г растворили в мерной колбе емкостью 100,0 мл. На титрование 20,00 мл полученного раствора пошло 18,34 мл NaOH. Определить молярную концентрацию раствора NaOH.

Решение. Поскольку 1 моль щавелевой кислоты содержит 2 иона водорода, вступающих в реакцию со щелочью по стехиометрии

$$H_2C_2O_4 \ + \ 2 \ NaOH \ = \ Na_2C_2O_4 \ + \ 2 \ H_2O,$$

то
$$f_{_{9KB}}(H_2C_2O_4\cdot 2H_2O) = 1/2$$
.

В соответствии с законом эквивалентов число молей эквивалента титранта равно числу молей эквивалента определяемого вещества:

$$n(NaOH) = n(1/2H_2C_2O_4 \cdot 2H_2O).$$

Из условий задачи следует, что щелочью оттитровано только 20,00 мл щавелевой кислоты (объем аликвоты V_a). Приведенную в условии задачи навеску щавелевой кислоты растворили в 100,0 мл (объем колбы V_{κ}). Таким образом, число молей эквивалента кислоты в аликвоте меньше их общего количества во всем растворе в 5 раз:

$$f_a = \frac{V_{\kappa}}{V_a} = \frac{100,0}{20,00} = 5.$$

Тогда в выражение для закона эквивалентов необходимо подставить

$$n(1/2H_2C_2O_4 \cdot 2H_2O) = \frac{m(H_2C_2O_4 \cdot 2H_2O)}{M(1/2H_2C_2O_4 \cdot 2H_2O) \cdot f_a} = \frac{m(H_2C_2O_4 \cdot 2H_2O) \cdot V_a}{M(1/2H_2C_2O_4 \cdot 2H_2O) \cdot V_\kappa}$$

Количество вещества NaOH можно выразить как:

$$n(NaOH) = \frac{C(NaOH) \cdot V(NaOH)}{1000},$$

поскольку в условии задачи объем гидроксида натрия приведен в миллилитрах, а молярная концентрация эквивалента соответствует, по определению, числу молей эквивалента в 1 л раствора.

Подставляя эти два выражения в закон эквивалентов, получаем после несложного преобразования:

$$\begin{split} &C(\text{NaOH}) = \frac{m(\text{H}_2\text{C}_2\text{O}_4 \cdot 2\text{H}_2\text{O}) \cdot 1000 \cdot \text{V}_{\text{a}}}{M(1/2\text{H}_2\text{C}_2\text{O}_4 \cdot 2\text{H}_2\text{O}) \cdot \text{V}(\text{NaOH}) \cdot \text{V}_{\text{k}}} = \\ &= \frac{0,6000 \cdot 20,00 \cdot 1000}{63,033 \cdot 100,0 \cdot 18,34} = 0,1038 \text{ моль}/\text{л}. \end{split}$$

При серийных анализах для ускорения расчетов используют поправочные коэффициенты. Если известен результат анализа при одной концентрации титранта (как правило, округленной), в любых единицах, например, в граммах, то результат титриметрического анализа при другой концентрации титранта, выраженный в тех же единицах, пропорционален ему. Коэффициент пропорциональности равен поправочному коэффициенту.

Пример 2.9. В стандартной таблице для точно 0,1000 М раствора NaOH показано, что 22,52 мл щелочи нейтрализуют 0,08211 г HCl. Если истинная молярная концентрация эквивалента используемого раствора NaOH составляет 0,1048 моль/л, надо найти массу кислоты, которая нейтрализуется тем же объемом шелочи.

Решение. По данным условия, поправочный коэффициент равен:

$$K = \frac{C_{\text{uct}}}{C_{\text{tafil}}} = \frac{0,1048}{0,1000} = 1,048.$$

При расчете результатов титрования табличный результат умножают на поправочный коэффициент. Если израсходовано 22,52 мл щелочи, табличный результат равен 0,08211 г кислоты, но для данного коэффициента истинная масса кислоты составит

$$m(HCl) = m_{\text{табл}}K = 0.08211 \cdot 1.048 = 0.08605 \text{ r.}$$

Помимо молярной концентрации эквивалента, аналитические расчеты могут проводиться аналогичным образом и в тех случаях, когда концентрация титранта выражена другим способом. Приведем пример расчета результата прямого титрования по методу пипетирования.

Пример 2.10. Сколько граммов H_2SO_4 содержится в 250,0 мл раствора, если на нейтрализацию 25,00 мл его требуется 24,17 мл NaOH, имеющего титр 0,004085 г/мл?

Решение. Вычисляем молярную концентрацию эквивалента раствора NaOH:

$$C(NaOH) = 1000 T(NaOH) / M_{экв}(NaOH) = 1000 \cdot 0,004085 / 39,998 = 0,1021 моль/л.$$

По закону эквивалентов определяем молярную концентрацию эквивалента раствора H_2SO_4 , учитывая, что можно использовать выражение $n=C\cdot V$ для обоих участников реакции:

$$C(1/2H_2SO_4)$$
 · $V(H_2SO_4) = C(NaOH)$ · $V(NaOH)$; $C(1/2H_2SO_4) = 0.1021 \cdot 24.17 / 25.00 = 0.09873$ моль/л.

Аликвота серной кислоты составляла 25,00 мл, но количество кислоты надо найти в 250,0 мл. С учетом того, что для серной кислоты $f_{_{9KB}}=1/2$, а молярная масса эквивалента $M(1/2~H_2SO_4)=98,08~/~2=49,04~г/моль,$ искомая масса серной кислоты равна

$$m = C(1/2H_2SO_4) \cdot M (1/2 H_2SO_4) \cdot V_{\text{общ}} = 0,09873 \cdot 49,04 \cdot 0,250 = 1,209 \ \Gamma.$$

В методе обратного титрования (титрования по остатку) используют два титранта: сначала обрабатывают анализируемое вещество одним из них, взятым в заведомом избытке, а затем непрореагировавший избыток оттитровывают другим титрантом. Пример расчета результата обратного титрования по методу отдельных навесок.

Пример 2.11. Навеску карбоната натрия Na_2CO_3 обработали 50,00 мл 0,09496 М раствора HCl, избыток кислоты оттитровали 24,90 мл 0,1298 М раствора NaOH. Вычислить массу карбоната натрия.

Решение. Мы видим, что в данном случае образец соли со щелочными свойствами обработан кислотой, причем кислота осталась в избытке, раз при последующем титровании щелочью был израсходован определенный объем второго титранта, т.е. осуществлено титрование по остатку. Поскольку карбонат натрия был обработан заведомым избытком кислоты, химическая реакция соответствует стехиометрии:

$$Na_2CO_3 + 2 HC1 = 2 NaC1 + H_2O + CO_2$$

значит, фактор эквивалентности карбоната натрия $f_{_{3KB}} = 1/2$.

Закон эквивалентов следует записать как

$$\begin{split} n(HCl) &= n(1/2\ Na_2CO_3) + n(NaOH);\\ n(1/2\ Na_2CO_3) &= n(HCl) - n(NaOH) = \\ &= C(HCl) \cdot V(HCl) - C(NaOH) \cdot V(NaOH) = \\ &= 50,00 \cdot 0,09496 - 24,90 \cdot 0,1298 = 4,748 - 3,232 = 1,516 \ (\text{ммоль}). \end{split}$$

Вычисляем массу карбоната натрия:

$$m(Na_2CO_3) = n(1/2 Na_2CO_3) \cdot M(1/2 Na_2CO_3) =$$

= 1,516 \cdot 53,00 = 80,35 (MT) = 0,08035 (T).

Пример расчета результата обратного титрования по методу пипетирования.

Пример 2.12. Навеску хлорида аммония обработали избытком щелочи. Выделившийся аммиак поглотили 50,00 мл 0,5120 М HCl и раствор разбавили до

250,0 мл. На титрование 50,00 мл полученного раствора израсходовали 23,73 мл 0,05 М КОН (K = 0,974). Сколько граммов NH₃ содержал хлорид аммония?

Решение. Число молей эквивалента HCl в исходном растворе кислоты составляет:

$$n = \frac{C(HCl) \cdot V(HCl)}{1000}.$$

С учетом разбавления этого раствора до 250,0 мл ($V_{\text{общ}}$) найдем число молей эквивалента HCl, взятое на анализ (n_1), с учетом объема аликвоты (V_a):

$$n_1 = \frac{C(HCl) \cdot V(HCl)}{1000} \cdot \frac{V_a}{V_{obsur}}.$$

Число молей эквивалента КОН (n_2), израсходованного на титрование избытка кислоты, определим по формуле:

$$n_2 = \frac{C(KOH) \cdot K \cdot V(KOH)}{1000}.$$

Тогда число молей эквивалента аммиака (n_3) , содержащееся в аликвотной части раствора $(50,00\,\mathrm{m}\pi)$, определяется по разности $n_3=n_1-n_2$; но во всем объеме раствора $(250\,\mathrm{m}\pi)$, его количество пропорционально больше. Отсюда:

$$m(\text{NH}_3) = \left(\frac{C(\text{HCl}) \cdot V(\text{HCl})}{1000} \cdot \frac{V_a}{V_{o \text{OIII}}} - \frac{C(\text{KOH}) \cdot \text{K} \cdot V(\text{KOH})}{1000}\right) \cdot \frac{V_{o \text{OIII}}}{V_a} \cdot M(\text{NH}_3)$$

Подставляя численные значения, получаем:

$$m(\mathrm{NH_3}) = \left(\frac{0,5120 \cdot 50,00}{1000} \cdot \frac{50,00}{250} - \frac{0,05 \cdot 0,9740 \cdot 23,73}{1000}\right) \cdot \frac{250,0}{50,00} \cdot 17,03 = 0,3375\Gamma.$$

Кислотно-основное определение веществ, которые сами не являются достаточно сильными кислотами или основаниями, можно провести по методу замещения (косвенное титрование). В этом случае определяемое вещество предварительно обрабатывают дополнительным реагентом, который подбирают так, чтобы продукт реакции можно было оттитровать. В точке эквивалентности число молей эквивалента титранта равно числу молей эквивалента продукта вспомогательной реакции, которое, в свою очередь, равно числу молей эквивалента определяемого вещества. Пример описывает расчет по методу пипетирования, т.к. титруется аликвота исходного раствора.

Пример 2.13. Пробу раствора формальдегида объемом 5,00 мл разбавили до 100,0 мл. К аликвоте раствора объемом 5,00 мл добавили сульфит натрия; образовавшиеся в результате реакции:

$$HCOH + SO_3^{2-} + H_2O = CH_2(OH)SO_3^{-} + OH^{-}$$

ионы гидроксида оттитровали 22,45 мл 0,1000 М ($f_{_{9KB}}=1/2$) раствора H_2SO_4 . вычислить концентрацию формальдегида (Γ/π) в исходном растворе.

Решение. При титровании по методу замещения

$$n(HCOH) = n(OH^{-}) = n(1/2 H_2SO_4),$$

следовательно, расчетная формула не отличается от таковой для прямого титрования и имеет вид:

$$C(HCOH) = \frac{C(1/2H_{2}SO_{4}) \cdot V(H_{2}SO_{4})}{1000} \cdot M(HCOH) \cdot \frac{V_{\kappa}}{V_{a}} \cdot \frac{1000}{V_{aH}},$$

где V_{aH} – объем анализируемого (исходного) раствора формальдегида;

 V_{κ} – объем мерной колбы, в которую перенесли пробу анализируемого раствора формальдегида;

 $V_{\rm a}$ – объем аликвотной части раствора, который отобрали пипеткой для титрования кислотой;

M (HCOH) — молярная масса эквивалента формальдегида, которая в данном случае равна молярной массе, поскольку по уравнению реакции из одной молекулы формальдегида образуется один ион OH^- , эквивалентный H^+ ($f_{_{3KB}}=1$).

Подставляя в формулу численные значения из условия задачи, получаем:

$$C(HCOH) = \frac{0,1000 \cdot 22,45}{1000} \cdot 30,026 \cdot \frac{100,0}{5,00} \cdot \frac{1000}{5,00} = 269,6 \text{ г/л}.$$

Если в ходе титриметрического анализа определяют несколько веществ из одной пробы, необходимо анализировать химизм происходящих в системе процессов, для того, чтобы не ошибиться, какие продукты образуются в точке (точках) эквивалентности, и как записать закон эквивалентов для каждой из реакций. В примере используется прямое титрование по методу отдельных навесок. Раздельное определения смеси веществ возможно за счет титрования по двум различным индикаторам, что дает две точки эквивалентности.

Пример 2.14. На титрование с фенолфталеином навески массой 0,4478 г, состоящей из Na_2CO_3 , $NaHCO_3$ и NaCl, потребовалось 18,80 мл 0,1998 М раствора HCl. При титровании с метиловым оранжевым на ту же навеску израсходовали 40,00 мл раствора кислоты. Вычислить массовую долю (%) Na_2CO_3 и $NaHCO_3$ в смеси.

Решение. Поскольку NaCl с соляной кислотой не взаимодействует, в данной смеси это — индифферентный компонент. При титровании смеси с фенолфталеином протекает реакция:

$$Na_2CO_3 + HC1 = NaC1 + NaHCO_3$$
.

В присутствии метилового оранжевого реагируют обе формы карбоната:

$$Na_2CO_3 + 2 HCl = 2 NaCl + H_2CO_3$$

 $NaHCO_3 + HCl = NaCl + H_2CO_3$.

Следовательно, при титровании смеси в присутствии фенолфталеина с раствором титранта взаимодействует только один компонент смеси, и его количество (массовую долю) легко определить по обычной формуле:

$$\omega(\mathrm{Na_2CO_3}),\% = \frac{\mathrm{C(HCl) \cdot V(HCl)_{\varphi\varphi}}}{1000} \cdot \mathrm{M(\mathrm{Na_2CO_3}) \cdot \frac{100\%}{m_{_{\mathrm{HAB}}}}}.$$

При этом $f_{_{3KB}}(Na_2CO_3)=1$, ведь он реагирует лишь с одним ионом водорода. Подставляя численные значения, получаем:

$$\omega(\text{Na}_2\text{CO}_3),\% = \frac{0,1998 \cdot 18,80}{1000} \cdot 105,989 \cdot \frac{100\%}{0,4478} = 88,91\%.$$

Раствор HC1, пошедший на титрование в присутствии метилового оранжевого, расходовался на карбонат натрия в смеси, причем в объеме, вдвое большем, чем на титрование того же вещества с фенолфталеином. Остальной объем титранта эквивалентен бикарбонату натрия. Следовательно, число молей эквивалента бикарбоната натрия можно рассчитать, как произведение этой разности объемов на концентрацию титранта:

$$n(NaHCO_3) = C(HCl) \cdot [V(HCl)_{MO} - 2V(HCl)_{\varphi\varphi}].$$

После чего массовая доля бикарбоната натрия рассчитывается по обычной формуле:

$$\label{eq:omega_substitution} \begin{split} &\omega(\text{NaHCO}_3)\text{,}\% = \frac{\text{C(HCl)} \cdot [\text{V(HCl)}_{\text{\tiny MO}} - 2\text{V(HCl)}_{\text{\tiny ϕ}}]}{1000} \cdot \text{M(NaHCO}_3) \cdot \frac{100\%}{m_{\text{\tiny MOD}}}. \end{split}$$

Молярная масса эквивалента равна молярной массе, как следует из уравнения реакции взаимодействия. Численное решение:

$$\omega(\text{NaHCO}_3),\% = \frac{0,1998 \cdot (40,00 - 2 \cdot 18,80)}{1000} \cdot 84,007 \cdot \frac{100\%}{0,4478} = 9,00\%.$$

Поскольку в условии задачи указано, что оставшийся компонент смеси – хлорид натрия, его процентное содержание находим по разности:

$$\omega$$
(NaCl),% = 100% - 88,91% - 9,00% = 2,09%.

Таким образом, в анализируемой смеси находится 88,91% Na₂CO₃, 9,00% NaHCO₃ и 2,09% NaCl .

2.2. ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

- 1. В 500,0 мл раствора содержится 2,658 г Na_2CO_3 . Рассчитайте $T(Na_2CO_3)$, $T(Na_2CO_3/HCl)$, и $C(Na_2CO_3)$ при нейтрализации этого раствора: а) до CO_2 ; б) до $NaHCO_3$.
- 2. В воде растворили 28 г «х.ч.» КОН и 40,20 г NaOH и разбавили водой до 1500 мл. Вычислить молярную концентрацию эквивалента щелочи в полученном растворе.
- 3. К 550,0 мл 0,1925 М HCl прибавили 50,00 мл раствора HCl с титром 0,02370. Вычислить молярную концентрацию и титр полученного раствора.
- 4. Какой объем 4,0 M HCl надо прибавить к 500,0 мл раствора HCl с титром по CaO 0,08400, чтобы получить раствор с титром по CaO, равным 0,09000?
- 5. Какой объем HCl ($\rho = 1,19 \text{ г/см}^3$) необходим для приготовления 1,0 л 0,1 M раствора?
- 6. Из навески гидроксида натрия массой 8,50 г, содержащего кроме NaOH 4,00% Na₂CO₃ и 8,00% H₂O, приготовили 1 л раствора. Определить молярную

- концентрацию эквивалента полученного раствора, если Na_2CO_3 нейтрализуется до H_2CO_3 .
- 7. Какой объем раствора серной кислоты с массовой долей 9,3% ($\rho=1,05$ г/см³) потребуется для приготовления 40 мл 0,35 М раствора H_2SO_4 ?
- 8. Какой объем раствора карбоната натрия с массовой долей 15% $(\rho=1,16\text{г/cm}^3)$ потребуется для приготовления 120 мл 0,45 M раствора Na_2CO_3 $(f_{3KB}=1/2)$?
- 9. Для приготовления 500 мл раствора было взято 20,00 мл соляной кислоты $(\rho=1,19 \text{ г/см}^3)$. Вычислить молярную концентрацию эквивалента полученного раствора.
- 10. Вычислить молярную концентрацию и титр раствора HCl, если на титрование 0,4217 г буры $Na_2B_4O_7 \cdot 10H_2O$ израсходовано 17,50 мл этой кислоты.
- 11. Определить $T(KOH/P_2O_5)$ раствора гидроксида калия, используемого при определении P_2O_5 в суперфосфате, если на титрование 18,00 мл 0,1 М HCl (K=0,9064) израсходовано 19,32 мл KOH (H_3PO_4 титруется до KH_2PO_4).
- 12. Навеску щелочи массой 0,5341 г, содержащей 92,00% NaOH и 8,00% индифферентных примесей, растворили в мерной колбе вместимостью 100,0 мл. Определить молярную концентрацию кислоты, T(HCl) и T(HCl/NaOH), если на титрование 15,00 мл раствора NaOH израсходовали 19,50 мл кислоты.
- 13. Определить молярную концентрацию эквивалента раствора КОН, если на титрование 15,00 мл его израсходовали 18,70 мл раствора HCl (T(HCl) = 0,002864).
- 14. До какого объема нужно довести раствор, в котором содержится 1,532 г NaOH, чтобы на титрование его аликвоты в 20,00 мл израсходовать 14,70 мл HCl(T(HCl) = 0,003800).
- 15. Какую массу щавелевой кислоты $H_2C_2O_4\cdot 2H_2O$ нужно взять, чтобы на ее титрование расходовалось 20,00 мл 0,1000 M NaOH?
- 16. Какую навеску янтарной кислоты для установки титра ~ 0,4 М NaOH методом отдельных навесок, чтобы на титрование приготовленных из них растворов расходовалось не более 25 мл устанавливаемого раствора?
- 17. Навеску фосфорной кислоты массой 2,604 г (ρ = 1,68 г/см³) перенесли в мерную колбу вместимостью 250,0 мл. На титрование 20,00 мл полученного раствора с метиловым оранжевым израсходовали 18,00 мл NaOH. Определить молярную концентрацию раствора NaOH.
- 18. Содержимое ампулы «фиксанал» $C(1/2 \text{ H}_2\text{SO}_4) = 0,1$ моль/л перенесено в мерную колбу вместимостью 500,0 мл и разбавлено до метки водой. На титрование 20,00 мл полученного раствора расходуется 18,82 мл раствора КОН. Определить: а) $K(KOH) \times 0,1 \text{ M}$; б) T(KOH/HCl).
- 19. Из навески $H_2C_2O_4\cdot 2H_2O$ массой 0,5500 г приготовили 100,0 мл раствора. На титрование аликвоты 10,00 мл этого раствора с фенолфталеином израсходовали 9,17 мл раствора NaOH. Найдите концентрацию раствора NaOH.
- 20. На титрование навески NaOH массой 0,09978 г израсходовали 22,00 мл кислоты HCl. Определить титр раствора HCl по Na₂O.

- 21. Навеску $H_2C_2O_4\cdot 2H_2O$ массой 0,6000 г растворили в мерной колбе вместимостью 100,0 мл. На титрование 20,00 мл полученного раствора израсходовали 18,34 мл NaOH. Определить молярную концентрацию раствора NaOH и его титр по $H_2C_2O_4$.
- 22. Какую массу дигидрофосфата калия KH_2PO_4 нужно взять на анализ, чтобы на титрование ее с фенолфталеином потребовалось 20,00 мл 0,1000 М КОН?
- 23. Какую массу вещества, содержащего 90% Na₂CO₃ и индифферентные примеси, нужно взять, чтобы на ее титрование с метиловым оранжевым израсходовать 20,00 мл 0,1000 М HCl?
- 24. На титрование раствора, содержащего 3,158 г технического КОН, израсходовали 27,45 мл раствора HCl T(HCl/NaOH = 0,07862). Вычислить массовую долю (%) КОН в образце.
- 25. Проба для анализа представляет собой смесь чистых солей Na_2CO_3 и K_2CO_3 . Для нейтрализации 0,1000 г этой смеси до CO_2 израсходовали 22,00 мл раствора HCl. Определить молярную концентрацию кислоты, если содержание Na_2CO_3 в смеси 37,00%.
- 26. Растворы NaOH и HCl имеют титры, выраженные одним и тем же (T(NaOH) = T(HCl)). В каком отношении должны находиться их объемы, нейтрализующие друга друга
- 27. На нейтрализацию 0,2140 г смеси, состоящей из карбонатов кальция и бария, израсходовали 15,00 мл 0,2000 М раствора HCl. Вычислить массовые доли (%) CaCO₃ и BaCO₃ в смеси.
- 28. Навеску неизвестного вещества массой 2,000 г растворили в мерной колбе вместимостью 100,0 мл. На титрование 25,00 мл раствора израсходовали 20,00 мл 0,4455М раствора HCl. Определить, что входило в состав анализируемого вещества: NaOH или KOH.
- 29. Навеску технического гидроксида натрия массой 0,3251 г растворили в мерной колбе вместимостью 100,0 мл. На титрование 25,00 мл раствора с фенолфталеином израсходовали 18,40 мл 0,1000 М HCl, а на титрование такой же аликвоты с метиловым оранжевым 18,80 мл кислоты. Вычислить массовую долю (%) NaOH в образце.
- 30. На титрование с фенолфталеином смеси, состоящей из Na₂CO₃, NaHCO₃ и NaCl массой 0,4478 г, потребовалось 18,80 мл 0,1998 М раствора HCl. При титровании с метиловым оранжевым на ту же навеску израсходовали 40,00 мл раствора кислоты. Вычислить массовую долю (%) Na₂CO₃ и NaHCO₃ в образце.
- 31. Навеску технического гидроксида натрия массой 0,4000 г растворили в мерной колбе вместимостью 100,0 мл. На титрование 20,00 мл раствора с метиловым оранжевым израсходовали 19,20 мл раствора HCl (T(HCl) = 0,003600). Такую же пробу раствора обработали 2 М ВаСl₂ до полного осаждения карбонатов и при титровании с фенолфталеином израсходовали 18,00 мл раствора HCl. Определить массовую долю (%) Na₂CO₃ в препарате.

- 32. На титрование раствора NaOH, содержащего 4% Na₂CO₃, в присутствии метилового оранжевого израсходовали 25,00 мл стандартного раствора HCl. Какой объем титранта пойдет на титрование этого же раствора NaOH в присутствии фенолфталеина?
- 33. Из навески технического гидроксида натрия массой 4,1200 г приготовили 1,0 л раствора. На титрование 25,00 мл этого раствора с метиловым оранжевым израсходовали 22,65 мл 0,1030 М раствора НСІ. В другой аликвоте осадили карбонат-ион в виде BaCO₃ и на титрование с фенолфталеином израсходовали 21,95 мл раствора НСІ. Найдите массовые доли (%) NaOH и Na₂CO₃ в образце.
- 34. Раствор NaOH загрязнен примесью Na₂CO₃. При титровании 50,00 мл 0,5010 М раствора HCl с фенолфталеином израсходовали 30,50 мл этой щелочи. Для титрования того же количества кислоты в присутствии метилового оранжевого потребовалось 30,00 мл щелочи. Рассчитайте количество молей NaOH и Na₂CO₃ в 1,0 л раствора.
- 35. Вычислить концентрацию N_2O_5 в г/л раствора HNO_3 , если на титрование 20,00 мл раствора кислоты израсходовано 21,12 мл 0,1120 M NaOH.
- 36. На титрование раствора, полученного из навески щавелевой кислоты массой 0,1371 г, израсходовано 22,10 мл 0,09842 М NaOH. Сколько молекул кристаллизационной воды содержалось в исходном препарате кислоты?
- 37. Навеску фосфорной кислоты массой 0,1182 г растворили в воде и на ее титрование по фенолфталеину израсходовали 22,18 мл 0,1 М NaOH (K=0,9519). Определить массовую долю (%) фосфорной кислоты в пересчете на P_2O_5 .
- 38. Вычислить массовую долю (%) свободного SO_3 (молярная масса 80,06) в олеуме, если на титрование 1,200 г олеума в присутствии метилового оранжевого израсходовали 49,25 мл 0,5202 М NaOH.
- 39. При анализе смеси HCl и H₃PO₄ пробу объемом 10,00 мл разбавили до 200,0 мл. На титрование 15,00 мл этого раствора с метиловым оранжевым израсходовали 13,90 мл 0,1015 М раствора NaOH. На титрование такого же объема раствора с фенолфталеином израсходовали 26,20 мл раствора NaOH. Какая масса HCl и H₃PO₄ содержится в 50,00 мл смеси?
- 40. Пробу объемом 5,00 мл смеси соляной и фосфорной кислот разбавили до 200,0 мл. На титрование 20,00 мл полученного раствора с метиловым оранжевым израсходовали 18,20 мл 0,1012 М NaOH; при титровании такой же пробы раствора с фенолфталеином израсходовали 34,70 мл раствора NaOH. Какая масса HCl и H₃PO₄ содержится в 100,0 мл смеси?
- 41. Пробу суперфосфатной пульпы объемом 5,00 мл разбавили до 250,0 мл, 25,00 мл фильтрата оттитровали 13,00 мл 0,1020 М КОН в присутствии метилового оранжевого. Затем продолжили титрование с фенолфталеином до розовой окраски, затратив 14,80 мл раствора КОН. Вычислить концентрацию H_3PO_4 и $Ca(H_2PO_4)_2$ в пульпе.
- 42. При получении экстракционной фосфорной кислоты пробу реакционной массы объемом 10,00 мл разбавили до 500,0 мл. На титрование 25,00 мл по-

лученного раствора в присутствии метилового оранжевого израсходовали 20,12 мл раствора NaOH ($T(NaOH/H_2SO_4) = 0,004901$), а на титрование такого же объема с фенолфталеином — 32,01 мл NaOH. Вычислить концентрацию H_2SO_4 и H_3PO_4 (Γ/Π).

43. Пробу экстракционной фосфорной кислоты объемом 5,00 мл разбавили до 250,0 мл. На титрование 20,00 мл полученного раствора в присутствии метилового оранжевого израсходовали 11,20 мл раствора NaOH (T(NaOH) = 0,004014):

$$H_3PO_4 + NaOH = NaH_2PO_4 + H_2O_4$$

а на титрование такой же пробы с фенолфталеином

$$H_3PO_4 + 2NaOH = Na_2HPO_4 + 2H_2O,$$

$$Ca(H_2PO_4)_2 + 2NaOH = CaHPO_4 + Na_2HPO_4 + 2H_2O;$$

23,60 мл NaOH. Вычислить концентрации H_3PO_4 и $Ca(H_2PO_4)_2$ в реакционной массе (г/л).

44. Навеску фосфорного удобрения массой 2,500 г после соответствующей обработки разбавили водой до 250,0 мл. Порцию раствора объемом 100,0 мл пропустили через катионит в H^+ -форме. Фильтрат и промывные воды собрали в мерную колбу вместимостью 500,0 мл. На титрование 100,0 мл этого раствора с бромкрезоловым зеленым израсходовали 12,87 мл 0,1 М NaOH (K = 1,017):

$$HCl + NaOH = NaCl + H2O,$$

 $H3PO4 + NaOH = NaH2PO4 + H2O.$

Такую же пробу оттитровали со смешанным индикатором, затратив 24,85 мл NaOH:

$$HCl + NaOH = NaCl + H2O,$$

 $H3PO4 + 2NaOH = Na2HPO4 + 2H2O.$

Вычислить массовую долю (%) Р₂О₅ в удобрении.

45. Из навески фторапатита массой 1,000 г выделили фтор дистилляцией. Дистиллят нейтрализовали раствором NaOH до pH 3,5. Затем горячий раствор K_2SiF_6 оттитровали 9,85 мл 0,1 M NaOH (K=1,023) с фенолфталеином:

$$K_2SiF_6 + 4NaOH = 2KF + 4NaF + SiO_2 + 2H_2O$$

Вычислить массовую долю (%) фтора в образце.

- 46. Какую массу фенола, содержащего около 3% индифферентных примесей, нужно взять для анализа, чтобы на титрование ее в среде метилэтилкетона израсходовать 5,00 мл 0,1000 М бензольно-метанольного раствора гидроксида тетраэтиламмония?
- 47. Навеску анилина массой 1,300 г растворили в 100,0 мл безводной уксусной кислоты. На титрование 5,0 мл раствора израсходовали 6,80 мл 0,1 М HClO₄ в диоксане. Вычислить массовую долю (%) индифферентных примесей в образце.
- 48. Навеску биохимического лигнина массой 0,0500 г растворили в диметилформамиде и оттитровали 5,20 мл 0,0300 М бензольного раствора метилата калия. Определить массовую долю (%) фенольных ОН-групп в образце.

- 49. К навеске гвоздичного масла массой 0,0997 г добавили этилендиамин и оттитровали ее 9,50 мл 0,1000 М бензольно-метанольного раствора метилата натрия. Определить массовую долю (%) фенола в навеске.
- 50. Какую массу гидрофталата калия нужно растворить в мерной колбе вместимостью 100,00 мл, чтобы на титрование 10,00 мл полученного раствора израсходовать 10,00 мл 0,1 М (K=1,082) раствора $HClO_4$ в ледяной уксусной кислоте?
- 51. На титрование 0,1758 г салициловокислого натрия (M = 176,21 г/моль), содержащего индифферентные примеси, в среде ледяной уксусной кислоты израсходовали 9,87 мл 0,1 М (K = 1,1008) раствора $HClO_4$ в ледяной уксусной кислоте. Определить массовую долю (%) основного вещества в препарате.
- 52. Какой объем 0,1063 М $HClO_4$ потребуется для титрования 0,3636 г глицина, H_2NCH_2COOH (M = 75,067 г/моль), в ледяной уксусной кислоте?
- 53. Навеску смеси $(NH_4)_2SO_4$ и K_2SO_4 массой 0,9560 г обработали 50,00 мл 0,2255 М раствора NaOH и при кипячении удалили аммиак. На титрование избытка NaOH пошло 12,60 мл 0,2153 М раствора HCl. Найдите массовую долю (%) K_2SO_4 в смеси.
- 54. Навеску апатитовой муки массой 5,000 г после кипячения с царской водкой перенесли в мерную колбу вместимостью 250,0 мл и раствор в колбе довели водой до метки. Из мерной колбы взяли 5,00 мл фильтрата и осадили PO_4^{3-} в виде молибдофосфата аммония. Полученный осадок растворили в 50,00 мл 0,2000 М КОН, избыток которого оттитровали 30,00 мл H_2SO_4 ($f_{_{3KB}} = 1/2$) до обесцвечивания фенолфталеина. Вычислить массовую долю P_2O_5 в образце.
- 55. К навеске известняка массой 0,1500 г прибавили 20,00 мл 0,2150 М раствора HCl, затем избыток кислоты оттитровали 7,60 мл раствора NaOH. Найдите массовую долю (%) CO₂ в известняке, если C(NaOH):C(HCl) = 0,983.
- 56. К навеске химически чистого $CaCO_3$ массой 0,1011 г добавили 25,00 мл раствора H_2SO_4 . На титрование избытка кислоты пошло 9,25 мл раствора NaOH. Найдите концентрации растворов H_2SO_4 и NaOH, если отношение эквивалентных объемов V(NaOH):V(HCl) = 0,995.
- 57. Навеску чугуна массой 3,458 г после соответствующей обработки перенесли в мерную колбу вместимостью 200,0 мл. Из 25,00 мл полученного раствора фосфор осадили в виде молибдофосфата аммония. Осадок растворили в 50,00 мл 0,1075 М раствора NaOH. На титрование избытка щелочи в присутствии фенолфталеина израсходовали 20,45 мл 0,1 М HNO₃ (К = 0,9817). Вычислить массовую долю (%) фосфора в анализируемом чугуне.
- 58. Навеску пестицида, содержащего 20,86% формальдегида, массой 3,017 г, обработали 50,00 мл 1,0 М NaOH (K = 0,9022) в присутствии пероксида водорода:

$$HCHO + OH^{-} + H_2O_2 = HCOO^{-} + 2H_2O.$$

Избыток щелочи оттитровали раствором HCl (T(HCl) = 0.03798). Какой объем HCl затратили на титрование?

59. Спиртовый раствор этилацетата объемом 10,00 мл разбавили до 100,0 мл. Аликвоту раствора объемом 20,00 мл прокипятили в колбе с обратным холодильником с 40,00 мл 0,0546 М раствора КОН:

$$CH_3COOC_2H_5 + OH^- = CH_3COO^- + C_2H_5OH$$

По охлаждении раствора избыток щелочи оттитровали 12,43 мл 0,0467 М раствора HCl. Какая масса этилацетата (M = 88,107 г/моль) содержалась в 100,0 мл исходного раствора?

- 60. К спиртовому раствору винилацетата объемом 1,00 мл добавили 15,00 мл 0,02000 М NaOH. Смесь нагрели и после охлаждения оттитровали избыток щелочи 12,85 мл 0,02000 М раствора HCl. Вычислить содержание (г/л) винилацетата (М = 86,09 г/моль) в растворе.
- 61. К навеске раствора массой 1,000 г, содержащего этиленгликоль, добавили уксусный ангидрид и нейтрализовали раствором NaOH по фенолфталеину. Для омыления образовавшегося эфира ввели 25,00 мл раствора NaOH (T(NaOH) = 0,04020):

Смесь прокипятили и после охлаждения избыток щелочи оттитровали 10,20 мл раствора HCl (T(HCl) = 0,03798). Вычислить массовую долю (%) этиленгликоля (молекулярная масса 62,07) в растворе.

- 62. Какую массу 2,5-динитрофенола $C_6H_3(OH)(NO_2)_2$ следует взять для определения азота по Кьельдалю, чтобы выделившийся аммиак мог быть поглощен 50,0 мл 0,2 М H_2SO_4 ($f_{_{9KB}}$ =1/2) и избыток кислоты оттитрован 20,0 мл 0,2 М NaOH?
- 63. Навеску образца, содержащего CaO, массой 1,3000 г растворили в 50,00 мл 0,1000 М раствора HCl. Избыток непрореагировавшей кислоты оттитровали раствором NaOH, израсходовали 3,50 мл. Вычислите массовую долю (%) CaO в образце, если 1,00 мл раствора HCl соответствует 1,25 мл раствора NaOH.
- 64. Навеску смеси Na_2SO_4 и Na_2CO_3 массой 0,1032 г обработали 50,00 мл 0,09496 М раствора HCl. Избыток кислоты оттитровали 24,90 мл 0,1298 М раствора NaOH. Найдите массовую долю (%) Na_2CO_3 в смеси.
- 65. Навеску мрамора массой 0,2834 г растворили в 30,00 мл 0,3933 М раствора HCl. На титрование избытка кислоты пошло 14,10 мл 0,4400 М раствора NaOH. Найдите массовую долю (%) примесей в образце.
- 66. Какую массу $NaNO_3$ следует взять для анализа, чтобы после восстановления NO_3^- выделившийся аммиак мог быть поглощен 40,0 мл 0,1000 М HCl и избыток кислоты оттитрован 20,00 мл 0,1000 М NaOH?
- 67. Навеску соли аммония массой 0,7200 г обработали избытком концентрированного раствора NaOH. Выделившийся аммиак поглотили 25,00 мл 0,2040 М раствора HCl и избыток кислоты оттитровали 12,70 мл 0,1030 М раствора NaOH. Найдите массовую долю (%) NH₃ в образце.

- 68. Навеску соли аммония массой 1,000 г обработали избытком концентрированного раствора NaOH. Выделившийся аммиак поглотили 50,00 мл 1,072 М HCl и избыток кислоты оттитровали 25,40 мл раствора NaOH (T(NaOH) = 0,004120). Вычислить массовую долю (%) NH₃ в образце.
- 69. Для определения аммонийного азота навеску удобрения массой 2,635 г растворили в мерной колбе вместимостью 250,0 мл. К 25,00 мл полученного раствора добавили формальдегид, выделившуюся кислоту оттитровали 18,72 мл раствора NaOH (T(NaOH) = 0,003987). На титрование формальдегида в холостом опыте израсходовали 0,50 мл NaOH. Вычислить массовую долю (%) азота в удобрении.
- 70. В каком объеме соляной кислоты (T(HC1) = 0.003638) нужно растворить навеску $CaCO_3$ массой 0.1234 г, чтобы на титрование избытка кислоты с метиловым оранжевым израсходовать 19.50 мл раствора NaOH (T(NaOH/CaO) = 0.002910)?
- 71. К навеске Na_2CO_3 массой 0,1032 г прилили 50,00 мл 0,09496 М HCl, избыток кислоты оттитровали 24,80 мл 0,1 М NaOH (К = 1,298) по метиловому оранжевому. Вычислить массовую долю (%) индифферентных примесей в образце.
- 72. К смеси солей $SrCO_3$ и Li_2CO_3 массой 0,4789 г добавили 40,00 мл 0,5100 М HCl. Избыток кислоты оттитровали 20,00 мл NaOH (T(NaOH/HCl) = 0,01825) по метиловому оранжевому. Вычислить массовую долю (%) $SrCO_3$ и Li_2CO_3 .
- 73. Навеску сплава массой 0,1938 г растворили в соляной кислоте, и магний осадили гидрофосфатом натрия в среде аммонийного буфера. Осадок растворили в 50,00 мл 0,1 М HCl (K = 0,9981); на обратное титрование с метиловым оранжевым израсходовали 18,00 мл раствора NaOH (T(NaOH) = 0,004000). Определить массовую долю (%) Мg в сплаве.
- 74. К раствору соли лантана объемом 20,00 мл прилили избыток раствора аммиака. Осадок гидроксида лантана растворили в 40,00 мл 0,1000 М раствора HCl. Избыток кислоты оттитровали 19,55 мл 0,1108 М NaOH. Определить концентрацию лантана (г/л) в исходном растворе.
- 75. Калий из навески карналлита массой 0,8372 г осадили в виде калиевой соли дипикриламина. Осадок растворили в ацетоне, прибавили 50,00 мл 0,1046 М НС1 и после удаления ацетона избыток НС1 оттитровали 22,34 мл 0,1124 М раствора NaOH. Вычислить массовую долю (%) КС1 в карналлите, пересчитать это содержание на К₂O.
- 76. К навеске Na_3PO_4 массой 0,1000 г прибавили 25,00 мл 0,2000 М H_2SO_4 . На обратное титрование избытка кислоты с метиловым оранжевым израсходовали 15,00 мл раствора NaOH. Определить молярную концентрацию раствора NaOH.
- 77. Какой объем 0,1012 М HCl прибавили к навеске Na_3PO_4 массой 0,2000 г, если на титрование полученного раствора с фенолфталеином затратили 25,00 мл раствора NaOH (T(NaOH) = 0,003400)?
- 78. Навеску смеси чистых солей $Na_3PO_4\cdot 12H_2O$ и Na_2HPO_4 массой 2,506 г обработали 21,60 мл 0,2500 М раствора HCl; избыток кислоты оттитровали

- 18,50 мл 0,1500 М раствора NaOH с фенолфталеином. Вычислить массовую долю (%) компонентов смеси.
- 79. Навеску эпоксидной смолы массой 0.5248 г растворили в ацетоне и добавили 50.00 мл 0.1 М раствора HCl (K = 0.9816):

$$R$$
— CH — CH_2 + $HC1$ \longrightarrow R — CH — CH_2 OH $C1$

На титрование избытка кислоты израсходовали 18,45 мл NaOH (T(NaOH) = 0,004060). Вычислить массовую долю (%) эпоксидных групп в смоле.

- 80. Из навески бензанилида массой 0,8842 г аммиак отогнали в колбу, содержащую 50,00 мл 0,05 М H_2SO_4 ($f_{_{9KB}}=1/2$, K=1,071). На титрование избытка кислоты израсходовали 18,05 мл NaOH (T(NaOH)=0,004020). Вычислить массовую долю (%) азота и основного компонента $C_6H_5NHCOC_6H_5$ (M=197,24 г/моль) в образце.
- 81. Пробу раствора формальдегида объемом 5,00 мл разбавили до 100,0 мл. К аликвоте раствора объемом 5,00 мл добавили сульфит натрия, образовавшиеся в результате реакции:

$$HCOH + SO_3^{2-} + H_2O = CH_2(OH)SO_3^{-} + OH^{-}$$
.

 OH^- ионы оттитровали 22,45 мл 0,1000 М ($f_{_{9KB}}$ =1/2) раствора серной кислоты. Вычислить концентрацию CH_2O (г/л) в исходном растворе.

- 82. После сжигания навески колчедана массой 0,1400 г выделившийся сернистый газ поглотили раствором H_2O_2 , на титрование образовавшейся серной кислоты израсходовали 24,86 мл 0,1500 М NaOH. Вычислить массовую долю (%) серы в колчедане.
- 83. Воздух со скоростью 30 л/мин барботировали через ловушку,, содержащую 75 мл 1%-ного раствора H_2O_2 . Через 10 мин образовавшуюся H_2SO_4 оттитровали, израсходовав 11,10 мл 0,00204 М раствора NaOH. Рассчитайте содержание SO_2 в объемных процентах, если плотность SO_2 равна 0,00285 г/мл.
- 84. К образцу хлорида аммония, добавили избыток раствора формальдегида и полученный раствор оттитровали 0,1 М раствором гидроксида калия (K=0,9580). Вычислить массу хлорида аммония в образце, если на титрование раствора было затрачено 16,05 мл титранта.
- 85. Образец загрязненного нитрата аммония массой 2,500 г растворили в воде и получили 250,0 мл раствора. К аликвоте объемом 10,00 мл добавили избыток раствора формальдегида и затем оттитровали раствором гидроксида натрия с молярной концентрацией 0,1015 моль/л. Объем титранта равен 12,05 мл. Вычислить массовую долю аммония нитрата аммония в образце в %.
- 86. Навеску удобрения, содержащего 26,05% аммонийного азота, массой 1,290 г растворили в мерной колбе вместимостью 250,0 мл. К 25,00 мл полученного раствора добавили формальдегид и выделившуюся кислоту оттитровали 24,22 мл раствора NaOH. На титрование формальдегида в холостом опыте израсходовали 0,50 мл NaOH. Определить молярную концентрацию раствора NaOH.

87. Из раствора объемом 20,00 мл, содержащего Na₂SO₄, получили в кислой среде осадок бензидинсульфата. Осадок растворили в горячей воде и оттитровали 18,45 мл 0,1022 М NaOH:

$$C_{12}H_8(NH_2)_2 \cdot H_2SO_4 + 2OH^- = C_{12}H_8(NH_2)_2 + SO_4^{2-} + 2H_2O.$$

Определить концентрацию сульфата натрия в исходном растворе (г/л).

88. Для определения бензальдегида навеску массой 0,4728 г обработали раствором солянокислого гидроксиламина:

$$C_6H_5C$$
 $+$ $NH_2OH \cdot HCl = C_6H_5C$ $+$ $HCl + H_2O$

и выделившуюся соляную кислоту оттитровали 19,45 мл 0,25 М NaOH (K=0,9845). На титрование солянокислого гидроксиламина в холостом опыте израсходовали 1,75 мл того же раствора NaOH. Вычислить массовую долю (%) бензальдегида (M=106,13 г/моль) в исходном продукте.

- 89. Какую массу продукта, содержащего 98% *м*-нитробензальдегида (M = 151,13 г/моль), нужно взять на анализ, чтобы после добавления к ней солянокислого гидроксиламина выделившуюся в эквимолярном количестве соляную кислоту можно было оттитровать 20,00 мл 0,1 М NaOH (K = 1,048).
- 90. Активным ингредиентом антабуса (применяется для лечения хронического алкоголизма) является дисульфид тетраэтилтиурама

$$\begin{array}{ccc} & S & S \\ \parallel & \parallel \\ (C_2H_5)_2NCSSCN(C_2H_5)_2 \end{array}$$

- $(M=296\ \text{г/моль})$. Серу, содержащуюся в 0,4320 г препарата, окислили до SO_2 , который поглотили раствором H_2O_2 . На титрование образовавшейся серной кислоты затратили 22,1 мл 0,0373 М раствора NaOH. Рассчитайте процентное содержание активного ингредиента.
- 91. Неогетрамин $C_{16}H_{21}ON_4$ (M = 285 г/моль) является обычным антигистаминным препаратом, 0,1240 г пробы, содержащей это соединение, проанализировали по методу Кьельдаля. Выделившийся аммиак поглотили раствором HBO_2 ; на титрование образовавшегося BO_2^- потребовалось 26,10 мл 0,01470 М раствора HC1. Рассчитайте процентное содержание неогетрамина в пробе.

3. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНОЕ ТИТРОВАНИЕ

3.1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ И ПРИМЕРЫ РЕШЕНИЯ

Эквивалент окисляющегося или восстанавливающегося вещества — такая условная частица вещества, которая в данной единичной химической реакции может присоединять или отдавать один электрон или быть каким-либо образом эквивалентной электрону. Фактор эквивалентности — число, показывающее, какая доля реальной частицы вещества эквивалентна одному электрону.

Например, перманганат-ион — типичный окислитель, но в зависимости от среды восстанавливается в различные продукты, соответственно, принимает разное число электронов. Так, в кислой среде для перманганат-иона характерна полуреакция восстановления:

$$MnO_4^- + 8 H^+ + 5e \rightarrow Mn^{2+} + 5 H_2O_1$$

исходя из которой $f_{9KB}(MnO_4^-) = 1/5$; а эквивалент, т.е. условная частица, эквивалентная одному электрону — это $1/5~MnO_4^-$.

В нейтральной или слабощелочной среде перманганат-ион восстанавливается в соответствии с полуреакцией:

$$MnO_4^- + 4 H^+ + 3e \rightarrow MnO_2 + 2 H_2O$$
,

и в этом случае эквивалент представляет собой $1/3~{\rm MnO_4}^-, {\rm f}_{\rm экв}({\rm MnO_4}^-) = 1/3$.

Пример 3.1. Сколько граммов КМnO₄ надо взять для приготовления 2,00 л раствора, содержащего 0,500 молей эквивалента в литре, если данный раствор предполагается использовать для титрования в кислой среде?

Решение. Фактор эквивалентности $f_{3KB}(KMnO_4) = 1/5$ (т.к. в кислой среде $KMnO_4$ восстанавливается до Mn^{2+} , принимая 5 электронов):

$$MnO_4^- + 8 H^+ + 5 e \rightarrow Mn^{2+} + 4 H_2O.$$

Рассчитаем $M_{_{9KB}}=1/5\cdot 158,04$ г/моль = 36,61 г/моль. По формуле выражения для молярной концентрации эквивалента количество молей эквивалента $KMnO_4$ в 2,00 л раствора:

$$n(1/5 \text{ KMnO}_4) = C (1/5 \text{ KMnO}_4) \cdot V = 0,500 \cdot 2,00 = 1,00 \text{ моль}.$$
 Масса KMnO_4 составляет $m = n(1/5 \text{ KMnO}_4) \cdot M_{_{3KB}} = 31,6 (\Gamma).$

Важно помнить, что эквивалент и фактор эквивалентности определяются в зависимости от конкретной реакции, и если вещество X способно вступать в реакции различных типов, то и эквивалент этого вещества будет определяться исходя из разных принципов подсчета. Так, аскорбиновая кислота титруется щелочью как одноосновная (р $K_1 = 4,17$; р $K_2 = 11,57$, по второй ступени в водной среде не титруется), следовательно, $f_{_{3KB}} = 1$:

$$C_6H_8O_6 + NaOH = C_6H_7O_6Na + H_2O.$$

В то время как вступая в реакцию с окислителем, аскорбиновая кислота в качестве восстановителя отдает два электрона, следовательно, $f_{_{9KB}}=1/2$. Соответствующая реакция:

$$C_6 H_8 O_6 \ + \ I_2 \ = \ 2 \ HI \ + \ C_6 H_6 O_6.$$

Пример 3.2. Рассчитайте молярную концентрацию эквивалента $KH(IO_3)_2$, если для приготовления 200,0 мл стандартного раствора взяли 3,9050 г вещества (молярная масса 389,8 моль/л) и оно вступает:

- а) в кислотно-основную реакцию;
- б) в окислительно-восстановительную реакцию, протекающую с образованим Γ ;
- в) в окислительно-восстановительную реакцию в концентрированной HCl, протекающую с образованием ICl.

Решение. а) Напишем реакцию кислотно-основного взаимодействия:

$$KH(IO_3)_2 + NaOH = KIO_3 + NaIO_3 + H_2O.$$

Фактор эквивалентности $f_{\text{экв}} = 1$, следовательно:

$$C(KH(IO_3)_2) = \frac{m \cdot 1000}{M \cdot V} = \frac{3,9050 \cdot 1000}{389,8 \cdot 200,0} = 0,05009 M.$$

б) Для восстановления иодата в иодид иону необходимо принять 6 электронов, соответствующая полуреакция:

$$IO_3^- + 6e + 6H^+ \rightleftarrows I^- + 3 H_2O.$$

Поскольку молекула $KH(IO_3)_2$ содержит две частицы IO_3^- , то одна молекула принимает 12 электронов; $f_{9KB}(KH(IO_3)_2) = 1/12$. При расчете:

$$C(1/12 \text{ KH}(IO_3)_2) = \frac{\text{m} \cdot 1000}{\text{M}_{9KB} \cdot \text{V}} = \frac{3,9050 \cdot 1000}{389,8 \cdot 1/12 \cdot 200,0} = 0,6011 \text{ M}.$$

в) В то время как в полуреакции

$$IO_3^- + 4e + 6H^+ + Cl^- \neq ICl + 3 H_2O.$$

иодат-ион принимает 4 электрона, и $f_{_{3KB}}(KH(IO_3)_2) = 1/8$. Тогда:

$$C(1/8 \text{ KH}(IO_3)_2) = \frac{\text{m} \cdot 1000}{\text{M}_{AKB} \cdot \text{V}} = \frac{3,9050 \cdot 1000}{389,8 \cdot 1/8 \cdot 200,0} = 0,4007 \text{ M}.$$

Если необходимо определить фактор эквивалентности для вещества, которое определяют не по одной реакции, а по их последовательному ряду, следует учитывать суммарную стехиометрию. Например, при перманганатометрическом определении кальция сначала осаждают его оксалатом в виде CaC_2O_4 , фильтруют осадок, выделяют из него щавелевую кислоту и оттитровывают ее перманганатом калия. Уравнения реакций:

$$Ca^{2+} + C_2O_4^{2-} = CaC_2O_4 (T),$$

$$CaC_2O_4 (T) + H^+ + HSO_4^- = CaSO_4 (T) + H_2C_2O_4,$$

$$5 H_2C_2O_4 + 2 MnO_4^- + 6 H^+ = 10 CO_2 + 2 Mn^{2+} + 8 H_2O.$$

Очевидно, что в последней реакции $f_{_{9KB}}(H_2C_2O_4)=1/2$, поскольку она отдает два электрона. Перед этим один моль щавелевой кислоты был выделен из одного моля оксалата кальция, а тот, в свою очередь, образовался из одного моля кальция. Следовательно, при перманганатометрическом определении $f_{_{9KB}}(Ca)=1/2$.

Рассмотрим в качестве примера броматометрическое определение алюминия. Сначала проводят разделение: алюминий выделяют из раствора в виде осадка оксихинолината алюминия, затем выделенный осадок растворяют в ки-

слоте, в раствор переходят оксихинолин и ион алюминия, который в реакции, лежащей в основе определения, участия не принимает. Зато с оксихинолином (эквивалентным алюминию) взаимодействует бром, который получается из бромид-броматной смеси. По ее расходу на бромирование оксихинолина определяют число молей эквивалента алюминия.

Пример 3.3. Вычислить молярную массу эквивалента алюминия при броматометрическом определении его по схеме:

- a) $Al^{3+} + 3 C_9 H_6 NOH = Al(C_9 H_6 NOH)_3(T) + 3 NH_4^+$
- 6) $Al(C_9H_6NOH)_3(T) + 3H^+ = 3C_9H_6NOH + Al^{3+}$
- B) $BrO_3^- + 5 Br^- + 6 H^+ = 3 Br_2 + 3 H_2O$
- Γ) $C_9H_6NOH + 2 Br_2 = C_9H_4Br_2NOH + 2 H^+ + 2 Br^-$.

Решение. Начнем анализ схемы определения с конца. Как видно из уравнения (г), на 1 моль оксихинолина расходуется 2 моль Br_2 , т.е. 4 электрона (поскольку при образовании бромида каждая молекула брома принимает 2 электрона). По реакциям образования (а) и растворения (б) осадка оксихинолината алюминия можно видеть, что 1 моль Al^{3+} взаимодействует с 3 моль оксихинолина, следовательно, на 1 моль оксихинолината алюминия $Al(C_9H_6NOH)_3$ приходится $3\cdot 4=12$ электронов. А из одного иона алюминия образуется одна молекула оксихинолината алюминия. Таким образом, фактор эквивалентности оксихинолината алюминия и алюминия в данном определении $f_{3\kappa B}(Al) = 1/12$.

Молярная масса эквивалента алюминия:

$$M(1/12 \text{ Al}) = 1/12 \cdot M(\text{Al}) = 1/12 \cdot 26,9815 = 2,248 \ г/\text{моль}.$$

Среди окислительно-восстановительных методов выделяется бихроматометрия, в которой титрант ($K_2Cr_2O_7$) является первичным стандартом, его концентрация определяется по точной навеске. Прочие распространенные титранты необходимо стандартизовать. Например, в перманганатометрии проводят предварительную стандартизацию прямым титрованием $KMnO_4$ щавелевой кислоты или ее солей. В качестве примера приведено титрование по методу отдельных навесок.

Пример 3.4. Навеску химически чистого кристаллогидрата оксалата аммония $(NH_4)_2C_2O_4$ H_2O массой $0{,}3200$ г растворили в произвольном объеме воды, оттитровали раствором перманганата калия $KMnO_4$, затратив $10{,}26$ мл. Рассчитать молярную концентрацию эквивалента и титр раствора перманганата калия.

Решение. Находим молярную массу эквивалента оксалата аммония с учетом уравнения полуреакции:

$$C_2O_4^{2-} - 2e \rightarrow 2CO_2.$$

М $(1/2 \text{ (NH4)}_2C_2O_4\text{-H}_2O) = 1/2 \cdot 142,11 = 71,06 \text{ г/моль.}$

Запишем закон эквивалентов $n_1 = n_2$; с учетом данных условия задачи (известна навеска одного вещества и объем раствора другого):

$$m(NH_4)_2C_2O_4\cdot H_2O \ / \ M \ (1/2 \ (NH_4)_2C_2O_4\cdot H_2O) = C(1/5 \ KMnO_4) \cdot V(KMnO_4).$$

Отсюда $C(1/5 \text{ KMnO}_4) = 320,0 / (71,06 \cdot 10,26) = 0,4473 \text{ моль/л.}$ По молярной концентрации эквивалента находим титр этого раствора: $T = C \cdot M(1/5 \text{ KMnO}_4) / 1000 = 0,4473 \cdot 31,61 / 1000 = 0,01411 \text{ г/мл.}$

При серийном анализе широко применяют выражение концентрации титранта через его титр по определяемому веществу, т.е. рассчитывают, скольки граммам определяемого вещества эквивалентен 1 мл раствора титранта. После чего определение массы аналита легко произвести простым умножением этой величины на израсходованный объем титранта. Разумеется, если титруется аликвота анализируемой пробы, следует учесть фактор аликвотирования.

Пример 3.5. Определить массу железной проволоки, которую растворили в серной кислоте, после чего смесь ионов железа восстановили до Fe^{2+} , раствор перенесли в мерную колбу вместимостью 250,0 мл, отобрали аликвотную часть раствора 25,00 мл и оттитровали 0,1000 М раствором $KMnO_4$ ($f_{_{3KB}}=1/5$), затратив 40,00 мл титранта.

Решение. Определим Т (KMnO₄/Fe) по известной молярной концентрации эквивалента. Помним, что вещества реагируют в эквивалентных отношениях, и 1 моль эквивалента KMnO₄ взаимодействует с 1 моль эквивалента Fe. Поскольку при взаимодействии Fe^{2+} с окислителями образуется Fe^{3+} (передачей одного электрона), то молярная масса эквивалента железа равна его молярной массе.

$$T(KMnO_4/Fe) = \frac{C(1/5KMnO_4) \cdot M_{_{3KB}}(Fe)}{1000} (\Gamma Fe/мл).$$

 $T(KMnO_4/Fe) = 0,1000 \cdot 55,85 / 1000 = 0,005585 г/мл.$ На титрование аликвотной части раствора израсходовано 40,00 мл $KMnO_4$.

на титрование аликвотной части раствора израсходовано 40,00 мл кмпО₄. Вычисляем массу растворенной железной проволоки с учетом фактора аликвотирования $f_a = 250 / 25,00 = 10$.

m (Fe) = T (KMnO₄/Fe) · V (KMnO₄) ·
$$f_a$$
 = 0,005585 · 40,00 · 10 = 2,230 г.

При анализе с помощью окислительно-восстановительных реакций нередко применяется обратное титрование, В примере показано перманганатометрическое определение хрома в сталях методом отдельных навесок.

Пример 3.6. Навеску стали массой 1,0000 г растворили в кислотах, содержащийся в стали хром окислили до $\operatorname{Cr_2O_7}^{2-}$ и к полученному раствору добавили 15,00 мл 0,2500 М раствора соли Мора (FeSO₄·(NH₄)₂SO₄·6H₂O, одна из наиболее устойчивых солей двухвалентного железа). Избыток соли Мора оттитровали 0,1000 М (1/5 КМпО₄) раствором перманганата калия, израсходовав 25,50 мл. Рассчитайте массовую долю (%) хрома в стали.

Решение. При взаимодействии восстановителя с двумя окислителями число молей эквивалента Fe^{2+} равно сумме числа молей эквивалента бихромат-иона и перманганат-иона. Соответственно, число молей эквивалента $Cr_2O_7^{2-}$ находят

по разности. Это же будет и число молей эквивалентов хрома как элемента. При определении массы хрома следует учитывать, что в ходе взаимодействия

$$Cr_2O_7^{2-} + 6 Fe^{2+} + 14 H^+ = 2 Cr^{3+} + 6 Fe^{3+} + 7 H_2O$$

бихромат-ион принимает 6 электронов, и его эквивалент представляет собой условную частицу $1/6 \, {\rm Cr_2 O_7}^{2-}$. Однако число атомов хрома в ионе равно двум, и для атома хрома эквивалент — условная частица $1/3 \, {\rm Cr}$. Именно из этих соображений находят молярную массу эквивалента хрома:

$$M_{_{3KB}}$$
 (1/3 Cr) = 1/3 · M(Cr) = 1/3 · 51,996 = 17,332 г/моль.

Умножив молярную массу эквивалента на число молей эквивалента хрома (найденную по разности), определим его массу, а поделив на массу навески и умножив на 100% – массовую долю (%). Таким образом:

$$\omega(\text{Cr}),\% = \frac{[\text{C(Fe)} \cdot \text{V(Fe)} - \text{C(1/5KMnO}_4) \cdot \text{V(KMnO}_4)] \cdot \text{M}_{_{3\text{KB}}} (1/3\text{Cr}) \cdot 100\%}{1000 \cdot \text{m}_{_{\text{HaB}}}}$$

Подставив численные значения, получаем:

$$\omega(\mathrm{Cr}),\% = \frac{(0,2500 \cdot 15,00 - 0,1000 \cdot 25,50) \cdot 17,332 \cdot 100\%}{1000 \cdot 1,0000} = 2,081\%$$

Титрование по методу замещения довольно часто применяется в окислительно-восстановительных определениях, поскольку случается, что слишком сильные окислители вступают в прямое взаимодействие с восстановителями по нестехиометричным реакциям с образованием нескольких продуктов и т.п. Также бывает трудно подобрать редокс-индикатор для той или иной системы.

Распространенным вариантом иодометрического определения является действие анализируемого окислителя на иодид калия в кислой среде. В результате этой вспомогательной реакции выделяется эквивалентное количество иода, которое легко оттитровать по индикатору крахмалу восстановителем, вступающим с иодом в стехиометрическое взаимодействие, например, тиосульфатом натрия $Na_2S_2O_3$. В примере приведено определение железа(III) заместительным титрованием по методу пипетирования.

Пример 3.7. Определить массовую долю (%) хлорида железа(III) в техническом продукте, если навеску его массой 5,0000 г растворили в мерной колбе вместимостью 200,0 мл, к 20,00 мл этого раствора добавили иодид калия и кислоту, а выделившийся иод оттитровали 0,1000 М раствором тиосульфата натрия ($f_{9KB} = 1$), затратив 30,50 мл.

Решение. Железо(III) окисляет КI с выделением иода, а иод взаимодействует с тиосульфатом. При этом число молей эквивалента железа, иода и тиосульфата равны между собой. Для решения задачи достаточно приравнять число молей эквивалента хлорида железа и тиосульфата.

$$\frac{\text{m(FeCl}_3)}{\text{M}_{_{3KB}}(\text{FeCl}_3)} = \frac{\text{C(Na}_2\text{S}_2\text{O}_3) \cdot \text{V(Na}_2\text{S}_2\text{O}_3)}{1000},$$

если масса хлорида железа(III) выражена в граммах.

Следует, однако, учесть, что титруется только аликвотная часть раствора. Фактор аликвотирования находим как соотношение объема мерной колбы, в которой растворили $FeCl_3$, и объема аликвоты:

$$f_a = \frac{V_K}{V_a} = \frac{200,0}{20,00} = 10.$$

Тогда масса FeCl₃ по закону эквивалентов:

$$m(FeCl_3) = C(Na_2S_2O_3) \cdot V(Na_2S_2O_3) \cdot M_{9KB}(FeCl_3) \cdot f_a =$$

= 0,1000 · 30,50 · 162,2 · 10 = 494,7 (MΓ) = 0,4947 (Γ).

Массовая доля (%) хлорида железа в навеске технического продукта: $\omega(\text{FeCl}_3),\%=0,4947\ /\ 0,5000=0,9882=98,82\%.$

3.2. ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

- 1. Какую массу КМnO₄ надо взять для приготовления: а) 500,0 мл 0,0500 М раствора ($f_{_{3KB}}$ =1/5); б) 500,0 мл раствора с T(KMnO₄/Fe) = 0,005932; в) 250,0 мл раствора с T(KMnO₄/CaO) = 0,005246? Во всех случаях предусматривается титрование в кислой среде.
- 2. Какой объем 0,5000 М КМnO₄ ($f_{9KB} = 1/5$) необходимо прибавить к 500,0 мл раствора с $T(KMnO_4/Fe) = 0,00280$, чтобы получить: а) раствор с $T(KMnO_4) = 0,004250$; б) раствор с $T(KMnO_4/Fe) = 0,00400$.
- 3. До какого объема следует разбавить 500,0 мл 0,1000 М $K_2Cr_2O_7$ ($f_{_{9KB}}=1/6$), чтобы получить: а) раствор с $T(K_2Cr_2O_7)=0,003922$; б) раствор с $T(K_2Cr_2O_7/Fe)=0,00500$?
- 4. Какую массу $Na_2S_2O_3\cdot 5H_2O$ следует взять для приготовления: а) 500,0 мл 0,0200 М раствора $(f_{3KB}(Na_2S_2O_3\cdot 5H_2O)=1)$; б) 200,0 мл раствора с $T(Na_2S_2O_3/I_2)=0,006432$; в) 250,0 мл раствора с $T(Na_2S_2O_3/Cu)=0,001345$?
- 5. Азотная кислота плотностью 1,185 г/см³ содержит 30,10% (масс.) HNO₃. Рассчитайте молярную концентрацию эквивалента азотной кислоты в реакции восстановления до NO.
- 6. Вычислить $T(I_2/As_2O_3)$, если $T(I_2/Na_2S_2O_3)=0.003500$.
- 7. На титрование 20,00 мл раствора $FeSO_4$ в сернокислой среде израсходовали 22,50 мл 0,1000 М $K_2Cr_2O_7$ ($f_{3KB}=1/6$). Сколько воды нужно добавить к 200,0 мл раствора сульфата железа, чтобы сделать раствор точно 0,0500 М ($f_{3KB}=1$)?
- 8. Вычислить молярную концентрацию эквивалента раствора I_2 , если на титрование 0,1008 г As_2O_3 израсходовано 20,00 мл этого раствора?
- 9. Вычислить массу $H_2C_2O_4$ ·2 H_2O , которую следует перенести в мерную колбу вместимостью 500,0 мл, чтобы на титрование 25,00 мл полученного раствора израсходовать 20,25 мл раствора КМnO4 с концентрацией 3,280 г/л.
- 10. На титрование химически чистого оксалата натрия массой 0,1180 г в кислой среде израсходовано 19,55 мл раствора $KMnO_4$. Рассчитайте молярную концентрацию эквивалента ($f_{3KB} = 1/5KMnO_4$) этого раствора.

- 11. Навеску оксида мышьяка(III) массой 0,1100 г перевели в раствор и оттитровали 14,00 мл раствора перманганата калия. Вычислить титр титранта по пероксиду водорода (T(KMnO₄/H₂O₂).
- 12. Навеску оксида мышьяка(III) массой 0,1100 г перевели в раствор, добавили натрия гидрокарбонат и затем оттитровали 14,00 мл раствора иода в иодиде калия. Вычислить молярную концентрацию эквивалента титранта в растворе.
- 13. Навеску дихромата массой аммония 0,1004 г обработали избытком иодида калия в кислой среде и на титрование полученного раствора иода было израсходовано 22,54 мл раствора натрия тиосульфата. Вычислить молярную концентрацию натрия тиосульфата в растворе.
- 14. Навеску бромата калия массой 0,2015 г обработали избытком калия иодида в кислой среде, и на титрование полученного раствора иода было израсходовано 24,93 мл раствора тиосульфата натрия. Вычислить титр тиосульфата по иоду.
- 15. Навеску сульфата церия(IV) массой 0,0543 г обработали избытком иодида калия в кислой среде, и на титрование полученной смеси было израсходовано 14,94 мл раствора тиосульфата натрия. Вычислить титр раствора тиосульфата натрия
- 16. К 20,00 мл раствора бромата калия прибавили избыток иодида калия и на титрование выделившегося иода пошло 18,05 мл раствора тиосульфата натрия с молярной концентрацией эквивалента 0,04825 моль/л. Рассчитать молярную концентрацию бромата калия в растворе и его титр.
- 17. Навеску сульфаниловой кислоты массой 2,2594 г растворили в воде и получили 250,0 мл раствора. К аликвотной доле объемом 20,00 мл прибавили соляную кислоту, бромид калия и медленно оттитровали 17,35 мл раствора нитрита натрия. Рассчитать молярную концентрацию титранта и его титр по железу(II).
- 18. Навеску железа массой 0,5167 г растворили в разбавленной серной кислоте и получили 250,0 мл раствора. На титрование аликвотной доли объемом 20,00 мл пошло 11,65 мл сернокислого раствора сульфата церия(IV). Рассчитать молярную концентрацию титранта и его титр по пероксиду водорода.
- 19. Навеску натрия оксалата массой 0,1000 г растворили в хлороводородной кислоте. Нагретый до 50° С раствор оттитровали 12,00 мл сернокислого раствора сульфата церия(IV). Вычислить молярную концентрацию эквивалента титранта.
- 20. Сколько миллилитров 0,1050 M раствора $KMnO_4$ ($f_{3kB} = 1/5$) израсходуется на титрование 0,1600 г (NH_4)₂ C_2O_4 · H_2O , растворенных в25,00 мл воды? измениться ли расход раствора $KMnO_4$ для титрования навески, если растворить ее в другом объеме?
- 21. Для определения $T(KMnO_4)$ использовали стандартный образец, содержащий 2,95% хрома. Рассчитать массу навески образца, чтобы на титрование полученного из нее раствора Cr^{3+} было затрачено 20,00 мл 0,02500 M раствора $KMnO_4$ ($f_{2KB}=1/5$).

- 22. После обработки навески руды, содержащей 65,50% Fe_2O_3 , получен раствор железа (II), на титрование которого затрачено 14,00 мл 0,1000 М $(f_{_{3KB}}=1/5)$ раствора перманганата калия. Рассчитайте массу навески руды.
- 23. На титрование раствора марганца (II) в слабощелочной среде затрачено 15,10 мл 0,1240 М ($f_{_{3KB}}$ =1/5) раствора перманганата калия. Рассчитайте содержание (мг) марганца (II) в анализируемом растворе.
- 24. Навеску стали массой 0.2548 г с содержанием марганца 1.09% растворили, окислили марганец до MnO_4^- и оттитровали 18.50 мл раствора Na_3AsO_3 . Рассчитать молярную концентрацию эквивалента раствора Na_3AsO_3 и его титр по Mn.
- 25. Какую массу руды, содержащей около 60% Fe_2O_3 , следует взять для анализа, чтобы после соответствующей обработки на титрование полученной соли железа (II) израсходовать 20,00 мл 0,1000 М раствора $KMnO_4$ ($f_{2KR}=1/5$)?
- 26. В 20,00 мл раствора $FeCl_3$ железо восстановили до Fe^{2+} с помощью $SnCl_2$ (избыток последнего удалили действием $HgCl_2$) и оттитровали 19,20 мл 0,1045 М $KMnO_4$ (f_{3KB} =1/5). Какая масса Fe содержалась в 100,0 мл исходного раствора?
- 27. Навеску железного купороса оттитровали в кислой среде 15,00 мл раствора перманганата калия с молярной концентрацией эквивалента 0,06000 моль/л ($f_{_{3KB}}$ =1/5). Параллельно было проведено титрование такой же навески раствором дихромата калия с молярной концентрацией эквивалента 0,04500 моль/л ($f_{_{3KB}}$ =1/6). Вычислить массу навески железного купороса и объем затраченного в параллельном определении раствора титранта.
- 28. Навеску пергидроля массой 2,5000 г перенесли в мерную колбу вместимостью 500,0 мл. На титрование 25,00 мл раствора израсходовали 18,72 мл 0,1 М КМпО₄ (f_{3KB} =1/5, K = 1,124). Вычислить массовую долю (%) H_2O_2 в пергидроле.
- 29. Навеску пробы, состоящей только из Fe и Fe₂O₃, массой 0,2250 г растворили, восстановили железо до Fe²⁺ и оттитровали 37,50 мл 0,0991 М раствора $KMnO_4$ (f_{3KB} =1/5). Вычислить массовую долю (%) Fe и Fe₂O₃ в пробе.
- 30. После растворения навески оксида железа массой 0,1000 г и восстановления железа до Fe^{2+} на титрование израсходовали 12,61 мл 0,09931М раствора $K_2Cr_2O_7$ ($f_{_{3KB}}=1/6$). Определить, какую формулу имел анализируемый оксид: FeO, Fe_2O_3 или Fe_3O_4 .
- 31. После растворения цемента массой 0,5020 г и отделения кремниевой кислоты железо восстановили до Fe^{2+} и оттитровали 15,41 мл раствора дихромата калия ($T(K_2Cr_2O_7) = 0,000500$). Вычислить массовую долю (%) Fe_2O_3 в цементе.
- 32. Из технического сульфита натрия массой 0,5600 г приготовили 200,0 мл раствора. На титрование 20,00 мл раствора израсходовали 16,20 мл раствора иода, имеющего $T(I_2/As_2O_3) = 0,002473$. Определить массовую долю (%) Na_2SO_3 в образце.

- 33. Определить массовую долю (%) Sn в бронзе, если на титрование раствора, полученного из 0,9122 г бронзы, израсходовали 15,73 мл 0,03523 М I_2 ($f_{_{3KB}} = 1/2$).
- 34. Технический образец хлорида олова(II) массой 3,1000 г растворили и получили 250,0 мл раствора. На титрование аликвотной доли объемом 10,00 мл было затрачено 17,00 мл раствора перманганата калия с молярной концентрацией эквивалента (f_{3KB} =1/5) 0,01500 моль/л. Вычислить массовую долю (%) олова(II) хлорида в образце.
- 35. Образец массой 0,4050 г, содержащий нитрит калия с примесью сульфата калия, растворили в воде и получили 250,0 мл раствора. На титрование 10,00 мл 0,01 моль/л раствора перманганата калия (f_{3KB} =1/5, K = 0,9875) в сернокислой среде было затрачено 14,25 мл приготовленного раствора. Определить массовый состав (%) анализируемой смеси.
- 36. Серу из навески угля массой 0,1906 г перевели в SO_2 , который поглотили разбавленным раствором крахмала и оттитровали 20,45 мл 0,02088 н. раствора I_2 ($f_{_{3KB}} = 1/2$). Рассчитать массовую долю серы (%) в угле.
- 37. Образец массой 1,0737 г, содержащий метаарсенит натрия и додекагидрат арсената натрия, растворили в воде и получили 100,0 мл раствора. Аликвотную долю объемом 10,00 мл оттитровали 10,00 мл раствора иода с молярной концентрацией эквивалента ($f_{_{3KB}} = 1/2$) 0,1000 моль/л. Найти массу мышьяка в образце.
- 38. Для определения аскорбиновой кислоты (M = 176,13 г/моль) во фруктовом сиропе взяли пробу объемом 100,0 мл и оттитровали 15,25 мл 0,0100 М раствора хлорамина $T(CH_3C_6H_4SO_2NClNa\cdot 3H_2O)$ в присутствии крахмала и иодид-ионов. Вычислить концентрацию аскорбиновой кислоты (мг/мл), если при титровании она окисляется по схеме:

- 39. Для определения воды в удобрении взяли навеску массой 1,500 г и оттитровали 9,82 мл иодпиридинового раствора (SO_2 , I_2 , C_5H_5N реактив Фишера), титр которого установили по стандартному раствору воды в метаноле, с $T(H_2O) = 0,0100$. На титрование 2,00 мл стандартного раствора воды израсходовали 5,85 мл реактива Фишера. Вычислить массовую долю (%) воды в удобрении.
- 40. Образец новокаина гидрохлорида,

загрязненного примесями, массой 1,0350 г растворили в воде и получили 250,0 мл раствора. На титрование аликвотной доли 10,00 мл в присутствии соляной кислоты и избытка бромида калия пошло 3,05 мл 0,04863 моль/л

- раствора натрия нитрита. Вычислить массовую долю новокаина гидрохлорида в образце.
- 41. К 2,50 мл раствора $KClO_3$ прибавили 20,00 мл 0,1500 М раствора $FeSO_4$. На титрование избытка $FeSO_4$ пошло 5,00 мл 0,1089 М (f_{3KB} =1/5) раствора перманганата калия. Рассчитайте массовую долю (%) $KClO_3$ в растворе (плотность 1,02 г/см³).
- 42. Навеску феррохрома растворили и окислили хром до ${\rm Cr_2O_7}^{2-}$. К полученному раствору добавили 25,00 мл 0,1000 М раствора соли Мора, на титрование избытка которой пошло 3,50 мл 0,0500 М (${\rm f_{3кв}}$ =1/5) раствора перманганата калия. Найденное содержание хрома составляет 8,06%. Рассчитайте массу исходной навески сплава.
- 43. К раствору, содержащему 0,1510 г технического KClO₃, прилили 100,0 мл 0,09852 М раствора $Na_2C_2O_4$ ($f_{_{3KB}}=1/2$), избыток которого оттитровали 22,60 мл 0,1146 М KMnO₄ ($f_{_{3KB}}=1/5$). Вычислить массовую долю (%) KClO₃ в образце.
- 44. Рассчитать массовую долю (%) MnO_2 в природном пиролюзите, если образец массой 0,4000 г обработали разбавленной H_2SO_4 , содержащей 0,6000 г $H_2C_2O_4\cdot 2H_2O$, и избыток щавелевой кислоты оттитровали 23,26 мл 0,1129 М $KMnO_4$ ($f_{2KB}=1/5$).
- 45. Рассчитать массу образца, содержащего около 65% MnO_2 , чтобы после взаимодействия с 50,00 мл 0,1 M $H_2C_2O_4$ ($f_{_{9KB}}$ = 1/2) избыток ее оттитровывался 25,00 мл раствора $KMnO_4$ (1,00 мл раствора $KMnO_4$ эквивалентен 1,05 мл раствора $H_2C_2O_4$).
- 46. К раствору $KClO_3$ прибавили 50,00 мл 0,1048 М раствора $FeSO_4$, избыток которого оттитровали 20,00 мл 0,09450 М $KMnO_4$ ($f_{_{9KB}}=1/5$). Какая масса $KClO_3$ содержалась в растворе?
- 47. Какая масса кальция содержится в 250,0 мл раствора $CaCl_2$, если после прибавления к 25,00 мл его 40,00 мл 0,1000 М (NH_4)₂ C_2O_4 ($f_{3KB} = 1/2$) и отделения образовавшегося осадка $CaC_2O_4 \cdot H_2O$ на титрование избытка (NH_4)₂ C_2O_4 израсходовали 15,00 мл 0,02000 М $KMnO_4$ ($f_{3KB} = 1/5$)?
- 48. После растворения навески стали массой 1,2430 г хром окислили до $\operatorname{Cr_2O_7}^{2-}$. К раствору прибавили 35,00 мл раствора соли Мора и избыток Fe^{2+} оттитровали 16,12 мл раствора КМпО₄. Рассчитать массовую долю (%) Сг в стали, если $T(\operatorname{KMnO_4}) = 0,001510$, а 25,00 мл раствора соли Мора эквивалентны 24,10 мл раствора КМпО₄.
- 49. Навеску нитрозы (H_2SO_4 с оксидами азота) массой 1,025 г взвесили в стеклянной ампуле и разбили ее в 25,00 мл 0,1000 М КМпО₄ ($f_{_{9KB}} = 1/5$). После окончания реакции добавили 20,00 мл 0,1000 М FeSO₄ и избыток железа (II) оттитровали 17,50 мл 0,1000 М КМпО₄ ($f_{_{9KB}} = 1/5$). Вычислить массовую долю (%) N_2O_3 в нитрозе.
- 50. Навеску технического Na_2SO_3 массой 0,4680 г растворили в 100,0 мл 0,1000 М раствора I_2 ($f_{3KB}=1/2$). Избыток иода оттитровали 42,40 мл раствора $Na_2S_2O_3$, имеющего $T(Na_2S_2O_3/Cu)=0,006215$. Вычислить массовую долю (%) Na_2SO_3 в образце.

- 51. К 25,00 мл раствора H_2S прибавили 50,00 мл 0,01960 M раствора I_2 ($f_{_{3KB}}=1/2$) и избыток иода оттитровали 11,00 мл 0,02040 M $Na_2S_2O_3$ ($f_{_{3KB}}=1$). Вычислить концентрацию H_2S в растворе (Γ / Γ).
- 52. Для определения содержания формальдегида НСОН навеску технического препарата массой 0,2879 г растворили в воде, добавили NaOH и 50,00 мл 0,1004 М раствора I_2 ($f_{_{9KB}} = 1/2$):

$$HCOH + 3NaOH + I_2 = HCOONa + 2NaI + 2H_2O.$$

После подкисления раствора на титрование избытка иода пошло 15,20 мл раствора тиосульфата с $T(Na_2S_2O_3) = 0,01600$ г/мл. Вычислить массовую долю (%) формальдегида в препарате.

- 53. Для определения хрома (III) в присутствии ионов ${\rm CrO_7}^{2-}$ к 20,00 мл раствора прибавили 50,00 мл 0,1032 М раствора NaBrO ($f_{\rm 3KB}=1/2$) и некоторое количество концентрированного раствора NaOH, а избыток гипобромита оттитровали 21,45 мл 0,1014 М раствора ${\rm H_2O_2}$ ($f_{\rm 3KB}=1/2$). Какая была концентрация ${\rm Cr}^{3+}$ (${\rm г}/{\rm л}$) в анализируемом растворе?
- 54. К 20,00 мл раствора аминокислоты (серин, M = 105,09 г/моль) прибавили 25,00 мл 0,0200 М раствора $NaIO_4$ ($f_{_{9KB}}=1/2$). В щелочной среде идет реакция:

ция:
$$H_2N - CH - C + 2IO_4^- + 2OH^- = HCHO + HCOO^- + HCO_3^- + 2IO_3^- + NH_3 + H_2O.$$
 OH

Раствор подкислили CH_3COOH и добавили $NaHCO_3$ и KI. Иод, выделившийся в результате окисления иодида избытком периодата, оттитровали в присутствии крахмала 9,25 мл 0,0212 M $NaAsO_2$ ($f_{3KB} = 1/2$). Вычислить концентрацию серина (Γ /л) в исходном растворе.

- 55. Для определения содержания этилового спирта (M = 46,069 г/моль) в крови пробу массой 1,00 г подкислили азотной кислотой и добавили 25,00 мл 0,0200 М раствора $K_2Cr_2O_7$ ($f_{_{3KB}} = 1/6$) (при этом этанол окислился до уксусной кислоты). Избыток дихромата оттитровали иодометрически, затратив 22,25 мл 0,0200 М $Na_2S_2O_3$ ($f_{_{3KB}} = 1$). Вычислить концентрацию C_2H_5OH в крови (мг/л).
- 56. Навеску иодоформа CHI_3 (M = 393,73 г/моль) сплавили с твердым КОН, плав растворили. К полученному раствору КІ добавили кислоту и действием хлорной воды окислили ионы I^- до IO_3^- . Избыток хлора удалили кипячением, затем в раствор ввели КІ и выделившийся I_2 оттитровали 23,22 мл раствора тиосульфата натрия с $T(Na_2S_2O_3/I_2) = 0,02560$. Какая масса иодоформа была взята для анализа?
- 57. Для определения мочевины к анализируемой пробе добавили 30,00 мл $0,1000~\mathrm{M}$ раствора брома ($f_{_{3KB}}=1,2$) и 60,00 мл 0,5000 М NaOH. По окончании окисления мочевины

$$CO(NH_2)_2 + 3Br_2 + 6OH^- = CO_2 + N_2 + 5H_2O + 6Br^-.$$

Раствор подкислили до pH 2,0 и на титрование избытка брома израсходовали 5,50 мл 0,0500 M раствора арсенита натрия ($f_{3KB}(NaAsO_2)=1/2$). Рассчитайте содержание (мг) мочевины в пробе (M(CO(NH₂)₂=60,06 г/моль).

58. Пробу массой 0,5170 г, содержащую тиоцианат бария, растворили в растворе гидрокарбоната натрия и добавили 50,00 мл 0,1070 М раствора иода $(f_{3KB} = 1/2)$. После завершения реакции

 $Ba(SCN)_2 + 6I_2 + 8H_2O = BaSO_4 + 2HCN + 12HI + H_2SO_4$ раствор подкислили и избыток иода оттитровали, израсходовав 16,30 мл 0,0965 М раствора тиосульфата натрия. Рассчитайте массовую долю (%) тиоцианата бария в пробе (M(Ba(SCN)_2) = 253,50 г/моль).

- 59. К анализируемому кислому раствору Na_2SeO_3 добавили 15,00 мл 0,1000 М $KBrO_3$ ($f_{_{9KB}}$ =1/5) раствора бромата калия. Выделившийся бром удалили кипячением. На титрование остатка бромата калия затратили 5,00 мл 0,0960 М раствора арсенита натрия ($f_{_{9KB}}$ ($NaAsO_2$) = 1/2). Рассчитайте содержание (мг) селена в растворе.
- 60. Окисление этилмеркаптана иодом протекает по реакции:

$$2C_2H_5SH + I_2 = C_2H_5SSC_2H_5 + 2HI.$$

Анализируемую пробу массой 1,6500 г обработали в закрытом сосуде 50,00 мл 0,1190 М раствора иода ($f_{_{2KB}}$ =1/2). На титрование избытка иода затратили 16,70 мл 0,1320 М раствора тиосульфата натрия. Рассчитайте массовую долю (%) этилмеркаптана ($M(C_2H_5SH)$ = 62,13 г/моль) в пробе.

61. Для определения нитробензола к 70,00 мг пробы прибавили 35,00 мл 0,1000 M раствора TiCl₃. После завершения реакции

 $C_6H_5NO_2 + 6Ti^{3+} + 4H_2O = C_6H_5NH_2 + 6TiO^{2+} + 6H^+$ избыток $TiCl_3$ оттитровали при pH 0. При этом израсходовали 10,00 мл 0,0500 M раствора $FeCl_3$. Рассчитайте массовую долю (%) нитробензола $(M(C_6H_5NO_2) = 123,00 \text{ г/моль})$ в пробе.

62. Навеску органического соединения массой 0,1000 г (см. таблицу) растворили и добавили 50,00 мл 0,500 М NH_4VO_3 , при этом V(V) переходит в V(III). Остаток NH_4VO_3 оттитровали V (мл) 0,0250 М раствора $FeSO_4$ в присутствии фенилантраниловой кислоты в качестве индикатора. Вычислить массовую лолю (%) вешества в образце.

700000	who (70) bemeelba b copuside.						
Вари-	Вещество	М, г/моль	$n (NH_4VO_3)$ на моль вещества по реакции, моль	V(FeSO ₄) мл			
	Диметилглиоксим $(CH_3C=NOH)_2$	116,12	4	3,45			
	β -Фурфуральдоксим $C_5H_5O_2N$	111,10	6	2,25			
	Купферон $C_6H_5N(NO)ONH_4$	155,16	2	48,45			

63. Рассчитайте массовую долю (%) MnO_2 в навеске руды массой 0,3710 г, если на титрование иода, выделившегося при взаимодействии с раствором, со-

- держащем избыток иодида калия и кислоты, пошло 24,41 мл 0,2217 М раствора тиосульфата натрия. Молярная масса MnO₂ 86,94 г/моль.
- 64. Из навески известняка массой 0,1862 г, растворенной в HCl, ионы Ca^{2+} осадили в виде CaC_2O_4 · H_2O . промытый осадок растворили в разбавленной H_2SO_4 и образовавшуюся $H_2C_2O_4$ оттитровали 22,15 мл раствора перманганата калия ($T(KMnO_4/CaCO_3) = 0,005820$). Рассчитать массовую долю (%) Са- CO_3 в известняке.
- 65. Кальций из раствора осадили в виде $CaC_2O_4\cdot H_2O$, осадок отфильтровали, промыли и растворили в разбавленной H_2SO_4 . Образовавшуюся кислоту $H_2C_2O_4$ оттитровали 20,15 мл раствора $KMnO_4$, имеющего $T(KMnO_4/CaO) = 0,01752$. Какая масса кальция содержалась в растворе
- 66. Навеску технического CuCl массой 0,2600 г растворили в избытке солянокислого раствора $NH_4Fe(SO_4)_2$. На титрование образовавшихся ионов Fe^{2+} израсходовали 20,18 мл 0,1200 М раствора $K_2Cr_2O_7$ ($f_{_{9KB}}=1/6$). Найти массовую долю (%)CuCl в образце.
- 67. Уран, содержащийся в 50,00 мл раствора, пропустили через редуктор Джонса для восстановления до U^{3+} . Продуванием воздуха через раствор окислили уран до U^{4+} , и на титрование последнего израсходовали 21,30 мл 0,09940 М раствора $K_2Cr_2O_7$ ($f_{_{3KB}}=1/6$). Рассчитать концентрацию урана в растворе (Γ / π).
- 68. Вольфрам, содержащийся в 25,00 мл раствора, восстановили до W(III) с помощью гранулированного свинца. Затем к раствору прибавили избыток железоаммонийных квасцов

$$W(III) + 3Fe^{3+} = W(VI) + 3Fe^{2+}$$

- и образовавшиеся ионы Fe^{2+} оттитровали 21,20 мл 0,05025 М раствора $K_2Cr_2O_7$ ($f_{_{3KB}}=1/6$) в присутствии дифениламиносульфокислоты в качестве индикатора. Определить концентрацию вольфрама в растворе (мг/мл).
- 69. Рассчитать массу вещества, содержащего 0,3% серы, чтобы на титрование полученного из нее H_2S потребовалось 10,00 мл 0,0500 M раствора I_2 ($f_{_{2KB}} = 1/2$).
- 70. К кислому раствору КІ прибавили 20,00 мл 0,1133 М КМпО₄ ($f_{3KB} = 1/5$) и выделившийся иод оттитровали 25,90 мл раствора $Na_2S_2O_3$. Рассчитать молярную концентрацию эквивалента раствора $Na_2S_2O_3$.
- 71. Вычислить концентрацию раствора $Na_2S_2O_3$ (моль/л), если 20,00 мл раствора дихромата с $T(K_2Cr_2O_7/Fe) = 0,005584$ г/мл после добавления KI выделяют такое количество I_2 , которое оттитровывается 32,46 мл раствора $Na_2S_2O_3$.
- 72. К навеске $K_2Cr_2O_7$ массой 0,1500 г добавили HCl и избыточное количество KI, выделившийся иод оттитровали 21,65 мл раствора тиосульфата натрия. Рассчитать молярную концентрацию эквивалента раствора $Na_2S_2O_3$ и $T(Na_2S_2O_3/I_2)$.
- 73. К 25,00 мл раствора солянокислого гидроксиламина $(M(NH_2OH) = 33,03 \text{ г/моль})$ прибавили 25,00 мл 0,1 М раствора $KBrO_3$ $(f_{3KB} = 1/6)$ (K = 0,9876):

$$NH_2OH \cdot H^+ + BrO_3^- = NO_3^- + Br^- + 2H^+ + H_2O.$$

- Избыток бромата оттитровали иодометрически, затратив 15,00 мл раствора тиосульфата с $T(\text{Na}_2\text{S}_2\text{O}_3) = 0,01634$. Определить концентрацию раствора гидроксиламина NH₂OH (г/л).
- 74. Рассчитать массовую долю (%) меди в руде, если из навески руды массой 0,6215 г медь перевели в раствор в виде Cu^{2+} , добавили к этому раствору КI и на титрование выделившегося I_2 израсходовали 18,23 мл раствора тиосульфата натрия с $T(Na_2S_2O_3/Cu) = 0,006208$.
- 75. К подкисленному раствору H_2O_2 прибавили избыточное количество КІ и несколько капель раствора соли молибдена в качестве катализатора. Выделившийся I_2 оттитровали 22,40 мл 0,1010 М $Na_2S_2O_3$ ($f_{_{3KB}}=1$). Какая масса H_2O_2 содержалась в растворе?
- 76. Раствор H_2O_2 приготовили разбавлением 25,00 мл 3%-ной перекиси водорода до 250,0 мл. Сколько миллилитров полученного раствора следует взять, чтобы на его титрование после обработки HCl и KI израсходовать 25,00 мл 0,1500 M $Na_2S_2O_3$?
- 77. Какой объем хлорной воды, содержащей около 2% хлора, следует взять, чтобы на ее иодометрическое титрование израсходовать около 20,00 мл раствора тиосульфата натрия? $(T(Na_2S_2O_3\cdot 5H_2O) = 0,02453)$.
- 78. В мерную колбу вместимостью 250,0 мл поместили навеску белильной извести массой 3,359 г и добавили воды до метки. На иодометрическое титрование 25,00 мл полученного раствора потребовалось 18,29 мл раствора тиосульфата с $T(\text{Na}_2\text{S}_2\text{O}_3\cdot5\text{H}_2\text{O}) = 0,2453$. Вычислить массовую долю (%) активного хлора в белильной извести.
- 79. Пробу отбеливающего раствора объемом 20,00 мл разбавили в мерной колбе до 250,0 мл и 50,00 мл этого раствора оттитровали иодометрически, затратив 21,16 мл 0,1241 М $Na_2S_2O_3$ ($f_{_{9KB}}=1$). Рассчитать концентрацию активного хлора в первоначальном растворе (г/л).
- 80. Навеску технического $FeCl_3$ массой 4,208 г растворили в мерной колбе вместимостью 250,0 мл. К 20,00 мл полученного раствора добавили КІ и кислоты и выделившийся иод оттитровали 22,10 мл 0,09230 М $Na_2S_2O_3$ ($f_{3KB}=1$). Вычислить массовую долю (%) $FeCl_3$ в образце.
- 81. Навеску руды, содержащей MnO_2 , массой 0,1000 г обработали концентрированной HCl. Образовавшийся хлор отогнали и поглотили раствором KI. Выделившийся иод оттитрован 21,25 мл 0,05200 М $Na_2S_2O_3$ ($f_{_{ЭКВ}}=1$). Вычислить массовую долю (%) MnO_2 в руде.
- 82. Из 25,00 мл раствора свинец осадили в виде $PbCrO_4$, осадок отфильтровали, промыли, растворили в кислоте и добавили избыток KI. На титрование выделившегося I_2 израсходовали 21,50 мл 0,1010 M $Na_2S_2O_3$ ($f_{_{9KB}}=1$). Рассчитать концентрацию свинца в растворе (моль/л).
- 83. При определении Na_2SO_4 в растворе методом иодометрии ионы SO_4^{2-} путем ряда превращений заменили эквивалентным количеством ионов CrO_4^{2-} . Раствор подкислили, прибавили KI и выделившийся I_2 оттитровали 20,40 мл

- $0,01980\ M\ Na_2S_2O_3\ (f_{_{9KB}}=1)$. Какая масса Na_2SO_4 содержалась в исследуемом растворе?
- 84. На титрование I_2 , выделенного из 20,00 мл раствора HCl избытком смеси KIO₃ и KI, израсходовали 18,25 мл 0,02 М Na₂S₂O₃ ($f_{_{9KB}}$ = 1, K = 0,9825). Написать уравнение реакции между HCl и иодат-иодидным раствором и вычислить, какая масса HCl содержалась в 200,0 мл анализируемого раствора.
- 85. Раствор, содержащий смесь $FeCl_3$ и $K_2Cr_2O_7$, довели до объема 100,0 мл и оттитровали иодометрически в двух отдельных пробах (аликвоты по 20,00 мл). На титрование первой пробы затратили V_1 мл 0,02000 М $Na_2S_2O_3$ ($f_{9KB}=1$), что соответствует сумме Fe и Cr. Ко второй пробе прибавили пирофосфат натрия для связывания Fe^{3+} в комплекс, и на ее титрование израсходовали V_2 мл $Na_2S_2O_3$ той же концентрации. Рассчитать массу железа и хрома в растворе (см. таблицу):

Вариант	V ₁ , мл	V ₂ , мл	Вариант	V ₁ , мл	V ₂ , мл
1	19,45	12,20	4	18,67	9,23
2	20,50	11,40	5	22,05	15,80
3	21,72	10,35	6	20,12	6,60

86. Металл из раствора соли (см. в таблице по вариантам) осадили в виде оксихинолината, осадок отфильтровали, промыли и растворили в HCl; выделившийся 8-оксихинолин после прибавления KBr оттитровали раствором KBrO₃ с индикатором метиловым красным (фактическим титрантом является Br₂ как продукт взаимодействия KBrO₃ и KBr). Вычислить концентрацию раствора соли металла (моль/л и мг/мл), если на титрование 25,00 мл анализируемого раствора затратили V мл 0,1085 М раствора KBrO₃ (f_{экв} = 1/6).

311p J 3 11101 0	paerbopa sarparium v intro, roce in paerbopa rebros (1988 170).							
Вариант	Формула	n(Br ₂)	V (титранта), мл					
	соли	на атом металла						
1	$Al_2(SO_4)_3$	6	23,00					
2	$Al(NO_3)_3$	6	20,75					
3	Bi(NO ₃) ₃	6	18,41					
4	$Cd_2P_2O_7$	4	21,20					
5	CuSO ₄	4	21,84					
6	Cu ₂ (OH) ₂ CO ₃	4	20,90					
7	Mg ₂ SiO ₄	4	19,95					
8	MnCl ₂	4	19,06					
9	Pb(CH ₃ COO) ₂	4	21,91					
10	SbCl ₃	6	23,14					
11	ZnCl ₂	4	20,82					
12	$Zn_3(PO_4)_2$	4	22,65					

87. К препарату массой 0,1500 г, содержащему манит CH₂OH(CHOH)₄CH₂OH (М = 182,176 г/моль), прибавили несколько капель 2 М НС1 и 25,00 мл раствора КІО₄, содержащего 0,02000 моль эквивалента в 1 л. Избыток периодата восстановили 10,00 мл 0,01600 М FeSO₄и остаток раствора железа(ІІ) оттитровали 5,75 мл того же раствора КІО₄ в присутствии дифениламина. Вычислить массову дол (%) маннита в анализируемом препарате, если окисление

маннита периодатом, который в кислой среде существует в виде H_5IO_6 , происходит по реакции

$$CH_2OH(CHOH)_4CH_2OH + 5 H_5IO_6 =$$

= 2 HCOH + 4 HCOOH + 5 HIO₃ + 11 H₂O.

- 88. Навеску иодоформа СНІ₃сплавили с твердым КОН, плав растворили. К полученному раствору КІ добавили кислоту и действием хлорной воды окислили ионы I^- до IO_3^- . Избыток хлора удалили кипячением, затем в в раствор ввели КІ и выделившийся иод оттитровали 23,22 мл раствора тиосульфата натрия $T(Na_2S_2O_3/I_2) = 0,02560$. Какая масса иодоформа была взята для анализа?
- 89. Навеску одного из органических соединений (см. таблицу) массой 1,000 г растворили в мерной колбе вместимостью 250,0 мл и объем довели до метки. К 20,00 мл полученного раствора добавили 50,00 мл 0,09815 М раствора бромат-бромида калия ($f_{3KB} = 1/6$), избыток которого оттитровали иодометрически, затратив мл 0,1049 н. раствора $Na_2S_2O_3$ ($f_{3KB} = 1$). Вычислить массовую долю (%) основного вещества в анализируемом образце.

Вари-	Вещество	Формула	М, г/моль	n(Br ₂) на моль по ре- акции, моль	V (Na ₂ S ₂ O ₃), мл
1	<i>n</i> -Толуидин	CH ₃ C ₆ H ₄ NH ₂	107,16	3	10,15
2	Резорцин	$C_6H_4(OH)_2$	110,12	3	9,41
3	Фенол	C_6H_5OH	94,12	3	8,95
4	<i>o</i> -Крезол	$CH_3C_6H_4OH$	108,14	3	11,36
5	Анилин	$C_6H_5NH_2$	93,13	3	8,15
6	Ацетанилид	C ₆ H ₅ NHCOCH ₃	135,16	3	15,62
7	<i>о</i> -Нитрофенол	$NO_2C_6H_4OH$	139,12	2	28,06
8	Тимол	$CH_3(C_3H_7)C_6H_3OH$	150,21	2	27,15
9	Сульфаниламид	$C_{12}H_{14}O_2N_2S$	278,34	2	36,05
10	8-Оксихинолин	C ₉ H ₆ NOH	145,17	2	27,62
11	β-Нафтол	$C_{10}H_7OH$	144,17	1	36,41
12	2,4-Динитро- фенол	C ₆ H ₃ OH(NO ₂) ₂	184,11	1	39,17

4. КОМПЛЕКСОНОМЕТРИЧЕСКОЕ ТИТРОВАНИЕ

4.1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ И ПРИМЕРЫ РЕШЕНИЯ

Как известно, ЭДТА (двузамещенная натриевая соль этилендиаминтетрауксусной кислоты, Na_2H_2Y , комплексон III, Трилон Б) образует практически со всеми металлами комплексы состава 1:1, что означает $f_{_{9KB}}=1$ для веществ, определяемых этим методом. Поэтому при описании комплексонометрического титрования обычно избегают понятия "молярная масса эквивалента" и пользуются исключительно молярными массами * .

Пример 4.1. Какую массу навески комплексона III ($Na_2H_2Y \cdot 2H_2O$) необходимо растворить в воде для получения 200,0 мл раствора с молярной концентрацией комплексона III 0,05000 моль/л?

Решение. Молярная масса дигидрата двузамещенной натриевой соли этилендиаминтетрауксусной кислоты составляет 372,24 г/моль. В соответствии с заданными концентрацией и объемом рассчитаем массу вещества:

$$m(Na_2H_2Y \cdot 2H_2O) = C(Na_2H_2Y) \cdot M(Na_2H_2Y \cdot 2H_2O) \cdot V(Na_2H_2Y) =$$

= 0,05000 \cdot 372,24 \cdot 200,0 \cdot 10^{-3} = 3,722 \cdot \cdot.

Поскольку комплексон III — кристаллогидрат, то при длительном хранении может выветриваться, и растворы, полученные непосредственным растворением навески сухого вещества, могут иметь неточную концентрацию. Часто растворы ЭДТА стандартизуют, используя соли цинка или магния.

Пример 4.2. Какую массу металлического цинка следует взять для приготовления 100,0 мл раствора сульфата цинка, чтобы на титрование 20,00 мл его расходовалось 20,00 мл 0,0100 М раствора ЭДТА?

Решение. Количество молей эквивалента n(ЭДТА), затраченное на титрование Zn^{2+} , равно $n(Zn^{2+})$:

$$n(ЭДТА) = n(Zn)$$

 $C(ЭДТА)\cdot V(ЭДТА) = C(Zn)\cdot V(Zn).$

В условии задачи предполагается взаимодействие одинаковых объемов растворов, следовательно, и концентрации их также одинаковы. Таким образом, задача сводится к нахождению массы навески металлического цинка, из которой можно приготовить 100,0 мл 0,0100 М раствора.

$$m(Zn) = C(Zn) \cdot M(Zn) \cdot V(Zn) = \\ = 0.0100 \cdot 65.37 \cdot 100.0 = 65.37 \ \text{M} \\ \Gamma = 0.06537 \ \Gamma.$$

При стандартизации ЭДТА полученную концентрацию выражают тем способом, который представляется более удобным для последующего расчета результатов определения.

.

 $^{^*}$ Следует с осторожностью подходить к примерам расчетов и к задачам, приведенным в старой химической литературе, поскольку ранее для ЭДТА был произвольно принят $f_{_{3KB}}=1/2$.

Пример 4.3. Определить молярную концентрацию, титр Т(ЭДТА) и титр по определяемому веществу Т(ЭДТА/СаО) рабочего раствора ЭДТА, если на титрование навески металлического цинка массой 0,0131 г затратили 18,46 мл этого раствора.

Решение. В соответствии с основным принципом титриметрии:

$$n(ЭДТА) = n(Zn).$$

Поскольку титрование проводится по методу отдельных навесок, закон эквивалентов следует записать в форме:

$$\frac{m(Zn)}{M(Zn)} = \frac{C(ЭДТА) \cdot V(ЭДТА)}{1000},$$

при выражении массы цинка в граммах, а объема ЭДТА – в миллилитрах.

Получаем, что молярная концентрация ЭДТА равна:

$$C(\exists ДTA) = \frac{m(Zn) \cdot 1000}{M(Zn) \cdot V(\exists ДTA)} = \frac{0,0131 \cdot 1000}{65,38 \cdot 18,46} = 0,0108$$
 моль/л.

Тогда титр раствора ЭДТА равен:

$$T(ЭДТА) = \frac{C(ЭДТА) \cdot M(ЭДТА)}{1000} = \frac{0,0108 \cdot 372,24}{1000} = 0,00402$$
г/мл.

Следует помнить, что для выражения титра необходимо пользоваться молярной массой той формы вещества, которую непосредственно взвешивают. Поскольку комплексон III — кристаллогидрат, в формулу для определения титра следует подставлять M(ЭДТА) = 372,24 г/моль, в то время как молярная масса безводной формы $M(Na_2H_2Y) = 336,21$ г/моль.

Наконец, рассчитаем титр раствора ЭДТА по определяемому веществу CaO; это выражение концентрации позволяет существенно ускорить расчеты при серийном анализе одного и того же вещества.

Расчет из молярной концентрации ЭДТА:

$$T(ЭДТА/CaO) = \frac{C(ЭДТА) \cdot M(CaO)}{1000} = \frac{0,0108 \cdot 56,08}{1000} = 0,000608$$
г/мл.

Расчет из титра ЭДТА:

$$T(ЭДТА/CaO) = \frac{T(ЭДТА) \cdot M(CaO)}{M(ЭДТА)} = \frac{0,00402 \cdot 56,08}{372,24} = 0,000607$$
 г/мл.

Комплексонометрическое титрование широко применяется для определения ионов металлов, в том числе в смесях. В зависимости от свойств металлов и образующихся комплексов возможно применение различных приемов титрования. Например, прямое титрование (в данном случае смеси двух ионов в одной пробе, по методу пипетирования).

Пример 4.4. Раствор солей кальция и магния разбавили водой до 250,0 мл. На титрование 25,00 мл аликвоты с эриохромом черным Т было израсходовано 23,45 мл 0,0474 М ЭДТА, что соответствует сумме кальция и магния. На титрование другой аликвоты такого же объема после обработки щелочью (в резуль-

тате чего $Mg(OH)_2$ выпадает в осадок) с мурексидом было затрачено 10,33 мл того же раствора ЭДТА. Какие массы кальция и магния содержатся в анализируемом растворе?

Решение. Находим массу кальция по результатам титрования по мурексиду после отделения магния, не забывая учесть фактор аликвотирования (общий объем составлял 250,0 мл, а объем аликвоты был 25,00 мл):

$$m$$
 (Ca) = V'(ЭДТА) · C(ЭДТА) · M(Ca) · f_a = $10,33 \cdot 0,0474 \cdot 40,078 \cdot 10 = 196$ (мг).

Из суммарного объема ЭДТА, пошедшего на титрование аликвоты того же объема, было израсходовано на титрование одного только иона магния, без кальция:

$$V(ЭДТА) = V_{\text{сум}} - V'(ЭДТА) = 23,45 - 10,33 = 13,12 (мл).$$

Тогда масса магния определяется по стандартной формуле:

$$m (Mg) = V(ЭДТА) \cdot C(ЭДТА) \cdot M(Mg) \cdot f_a =$$

= 13,12 · 0,0474 · 24,3050 · 10 = 151 (мг).

Некоторые металлы образуют комплексы с ЭДТА очень медленно, и для их образования необходимо выдерживать реакционную смесь при высокой температуре. Понятно, что прямое титрование в данном случае невозможно. Однако если добавить ЭДТА в заведомом избытке, то после завершения реакции комплексообразования можно оттитровать этот избыток каким-либо подходящим ионом металла. Разумеется, обратное титрование возможно только в том случае, если ЭДТА будет образовывать с выбранным металлом комплекс меньшей прочности, чем с определяемым ионом. Типичный пример — определение алюминия, аква-комплекс которого очень инертен.

Пример 4.5. Отобрав 20,00 мл раствора, содержащего алюминий, добавили к нему 50,00 мл 0,01018 М ЭДТА при рН 5, затем раствор прокипятили в течение 20 мин для образования комплекса AlY⁻. Избыток ЭДТА оттитровали 16,75 мл 0,0200 М CuSO₄ (K = 1,004) с индикатором ПАН. Вычислить концентрацию ионов алюминия в растворе (Γ /л).

Решение. Записываем закон эквивалентов для обратного титрования:

$$n(Al) = n(ЭДТА) - n(CuSO_4).$$

Выразим количество вещества (моль) Al, ЭДТА и $CuSO_4$ с учетом данных, приведенных в условии задачи, обозначив искомую концентрацию алюминия (г/л) через "x":

$$\frac{x \cdot V_{np}}{M(Al) \cdot 1000} = \frac{C(\Im \Pi TA) \cdot V(\Im \Pi TA)}{1000} - \frac{C(CuSO_4) \cdot K \cdot V(CuSO_4)}{1000}.$$

Отсюда:

$$x = \left(\frac{C(ЭДТА) \cdot V(ЭДТА)}{1000} - \frac{C(CuSO_4) \cdot K \cdot V(CuSO_4)}{1000}\right) \cdot M(Al) \cdot \frac{1000}{V_{rrp}}.$$

После подстановки численных значений получаем:

$$x = \left(\frac{0,01018 \cdot 50,00}{1000} - \frac{0,02 \cdot 1,004 \cdot 16,75}{1000}\right) \cdot 26,982 \cdot \frac{1000}{20,00} = 0,2329 \text{ г/л}.$$

Вытеснительное титрование основано на реакции, при которой определяемый ион металла вытесняет ион другого металла из его менее устойчивого комплекса с ЭДТА (например, магния). При анализе таких катионов к раствору добавляют заведомый избыток комплексоната магния, образуется прочный комплекс с определяемым металлом (например, Hg²⁺), а выделившийся в эквивалентном количестве магний титруют обычным способом. Оставшийся в растворе комплексонат магния не мешает реакции.

Пример 4.6. На титрование 20,00 мл раствора $Hg(NO_3)_2$ после добавления избытка Na_2MgY и протекания реакции замещения: $MgY^{2-} + Hg^{2+} = HgY^{2-} + Mg^{2+}$

$$MgY^{2-} + Hg^{2+} = HgY^{2-} + Mg^{2+}$$

Затрачено 19,85 мл 0,05 M ЭДТА (K = 1,055). Вычислить концентрацию (г/л) раствора $Hg(NO_3)_2$.

Решение. При титровании по методу замещения

$$n(Hg) = n(Mg) = n(ЭДТА).$$

Выразим количество вещества ЭДТА (моль) с учетом условия задачи:

$$n(ЭДТА) = \frac{C(ЭДТА) \cdot K \cdot V(ЭДТА)}{1000},$$

тогда массу определяемого вещества можно представить формулой:
$$m(Hg) = \frac{C(\Im \Pi TA) \cdot K \cdot V(\Im \Pi TA)}{1000} \cdot M(Hg(NO_3)_2),$$

а концентрацию исходного раствора х (г/л) находим как:

$$x = \frac{C(\Im \Pi TA) \cdot K \cdot V(\Im \Pi TA)}{1000} \cdot M(Hg(NO_3)_2) \cdot \frac{1000}{V_{_{TD}}}.$$

Подставляя числовые значения, получаем:
$$x = \frac{0,05 \cdot 1,055 \cdot 19,85}{1000} \cdot 324,60 \cdot \frac{1000}{20,00} = 16,99 \text{ г/л}.$$

Наконец, с помощью комплексонометрического титрования можно вести косвенное определение анионов, взаимодействующих с ионами металлов. При этом проводят вспомогательную реакцию: определяемый анион (сульфид, сульфат, фосфат, анионы органических кислот) осаждают избытком стандартного раствора какой-либо соли металла, осадок отделяют, и титруют ЭДТА оставшийся в фильтрате избыток ионов металлов, не осадившихся определяемым ионом. Если осадок достаточно прочен, нет даже необходимости его отделять.

Пример 4.7. Для определения содержания сульфат-ионов в воде минерального источника к 150,0 мл ее прибавили 25,00 мл 0,01115 M BaCl₂. Не фильтруя осадок BaSO₄, добавили к смеси аммонийный буфер и оттитровали полученный

раствор 14,00 мл 0,01242 М ЭДТА. Вычислить концентрацию сульфат-ионов в воде (мг/л).

Решение. При добавлении BaCl₂ к воде, содержащей сульфат-ионы, выпадает осадок BaSO₄:

$$SO_4^{2-} + Ba^{2+} = BaSO_4(T).$$

В растворе остаются ионы бария, не вступившие в реакцию с сульфатом. Этот избыток бария оттитровывают раствором ЭДТА. Таким образом, барий взаимодействует и с сульфатом, и с ЭДТА, в этом случае число молей сульфата определяется по разности:

$$n(SO_4^{2-}) = n(Ba) - n(ЭДТА).$$

Отсюда, если выразить количества веществ (моль) с учетом данных, приведенных в условии задачи:

$$C(SO_4^{2-}) = [C(BaCl_2) \cdot V(BaCl_2) - C(ЭДТА) \cdot V(ЭДТА)] \cdot M(SO_4^{2-}) \frac{1000}{V_{_{IID}}} (\text{мг/л}).$$

Подставляя числовые значения, получаем:

$$C(SO_4^{2-}) = (0.01115 \cdot 25.00 - 0.01242 \cdot 14.00) \cdot 96.062 \frac{1000}{150.0} = 67.16 \text{ мг/л}.$$

Если ион металла, оставшийся в фильтрате, невозможно по какой-либо причине оттитровать ЭДТА напрямую, вводят избыток малопрочного комплексоната магния или другого металла, а после вытеснения магния искомым ионом из комплекса оттитровывают его, как обычно в вытеснительном титровании.

Пример 4.8. Навеску массой 0,2438 г образца, содержащего фенобарбиталат натрия (молярная масса $M(NaC_{12}H_{11}N_2O_3) = 253,99$ г/моль), растворили при нагревании в растворе NaOH. После подкисления уксусной кислотой для количественного осаждения фенобарбиталата ввели 25,00 мл 0,0203 М раствора $Hg(ClO_4)_2$. Осадок отфильтровали, фильтрат разбавили до 250,0 мл. К 50,00 мл фильтрата добавили избыток раствора MgY^{2-} . Выделившиеся по реакции

$$Hg^{2+} + MgY^{2-} \rightleftarrows Mg^{2+} + HgY^{2-}$$

ионы магния оттитровали при рН 10,0 0,0121 М раствором ЭДТА, израсходовав 5,89 мл. Рассчитайте массовую долю (%) азота и фенобарбиталата натрия в образце.

Решение. Реакция осаждения фенобарбиталата ртутью(II):

$$Hg^{2+} + 2 C_{12}H_{11}N_2O_3^- = Hg(C_{12}H_{11}N_2O_3)_2$$
 (T)

Найдем число молей ионов Hg^{2+} , оставшихся в фильтрате, исходя из того, что они вытеснили ионы магния из добавленного комплекса, с которыми и взаимодействовал ЭДТА. Необходимо также учесть, что титровали аликвотную часть 50,00 мл раствора, объем которого составлял 250,0 мл, т.е. фактор аликвотирования (равный 5).

$$n(Hg)_{_{\text{изб}}} = n(Mg) = \frac{C(\Im \Pi TA) \cdot V(\Im \Pi TA)}{1000} \cdot f_{_{a}} = \frac{0,0121 \cdot 5,89}{1000} \cdot 5 = 0,356 \cdot 10^{-3} \text{ (моль)}.$$

Рассчитаем число молей ртути(II), израсходованное на осаждение фенобарбиталата:

$$\begin{split} n(Hg) &= 1/2 \ n(NaC_{12}H_{11}N_2O_3) = n(Hg(ClO_4)_2) - n(Hg)_{_{\text{и}36}} = \\ &= C(Hg(ClO_4)_2) \cdot V(Hg(ClO_4)_2) \cdot 10^{-3} - n(Hg)_{_{\text{и}36}} = \\ &= (0,0203 \cdot 25,00) \cdot 10^{-3} - 0,356 \cdot 10^{-3} = (0,508 - 0,356) \cdot 10^{-3} = 0,152 \cdot 10^{-3} \ \text{моль}. \end{split}$$

Учитывая стехиометрию реакции взаимодействия фенобарбиталата со ртутью, следует помнить, что число молей $NaC_{12}H_{11}N_2O_3$ вдвое превышает найденное количество n(Hg); а поскольку в каждой молекуле фенобарбиталата натрия находится два атома азота — то число молей азота превышает найденное количество n(Hg) в четыре раза.

После чего найти массу искомых веществ (умножив число молей на их молярную массу) и массовую долю (разделив массу вещества на массу навески образца) не представляет труда:

$$\omega(N),\% = \frac{4 \cdot n(Hg) \cdot M(N) \cdot 100\%}{m_{_{HAB}}} = \frac{4 \cdot 0,152 \cdot 10^{-3} \cdot 14,01 \cdot 100\%}{0,2438} = 3,47\%$$

$$\omega(NaC_{_{12}}H_{_{11}}N_{_{2}}O_{_{3}}),\% = \frac{2 \cdot n(Hg) \cdot M(NaC_{_{12}}H_{_{11}}N_{_{2}}O_{_{3}}) \cdot 100\%}{m_{_{HAB}}} =$$

$$= \frac{2 \cdot 0,152 \cdot 10^{-3} \cdot 253,99 \cdot 100\%}{0,2438} = 31,4\%$$

4.2. ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

- 1. Рассчитать массу $Hg(NO_3)_2 \cdot H_2O$, необходимую для приготовления 250,0 мл 0,0500 M $Hg(NO_3)_2$ ($f_{_{9KB}}$ =1/2).
- 2. На титрование 20,00 мл раствора NaCl пошло 18,62 мл 0,1000 н. $Hg(NO_3)_2$ (f $_{3KB}$ =1/2). Рассчитать молярную концентрацию раствора NaCl.
- 3. Навеску KSCN массой 4,856 г растворили в мерной колбе вместимостью 500,0 мл. На титрование 25,00 мл полученного раствора израсходовали 24,95 мл раствора $Hg(NO_3)_2$. Определить титр раствора $Hg(NO_3)_2$.
- 4. На титрование 0,0610 г NaCl израсходовали 19,30 мл раствора $Hg(NO_3)_2$. Определить молярную концентрацию и титр раствора $Hg(NO_3)_2$.
- 5. Какую массу металлического цинка необходимо растворить в H_2SO_4 для приготовления 100,0 мл 0,0100 M раствора $ZnSO_4$?
- 6. Титр раствора ЭДТА по оксиду кальция равен 0,000560 г/мл. Рассчитать молярную концентрацию этого раствора.
- 7. Какую навеску динатриевой соли ЭДТА нужно взять для приготовления 200 мл раствора с титром по стронцию, равным 0,00080 г/мл?
- 8. Раствор ЭДТА приготовили растворением 10,00 г чистой H_4Y (M = 292 г/моль) в небольшом объеме NaOH и разбавлением точно до 500,0 мл. Рассчитать для этого раствора: молярную концентрацию эквивалента; титр по Ca^{2+} ; титр по $MgCO_3$.

- 9. Раствор ЭДТА приготовили растворением 4,45 г очищенного и высушенного $Na_2H_2Y\cdot 2H_2O$ в подходящем объеме воды и разбавлением точно до 1 л. Рассчитать молярную концентрацию полученного раствора, учитывая, что исходное вещество содержит 0,5% влаги.
- 10. Концентрация рабочего раствора ЭДТА была установлена по раствору, содержащему в 1 л 25,00 г FeNH₄(SO₄)₂·12H₂O. На титрование 10,00 мл этого раствора израсходовано 12,50 мл раствора ЭДТА. Рассчитать: а) молярную концентрацию; б) титр по Fe₂O₃ и в) титр по CaO раствора ЭДТА.
- 11. Стандартный раствор хлорида магния приготовили растворением 0,1065 г чистого оксида магния в соляной кислоте, раствор разбавили и довели водой до 250,0 мл в мерной колбе. Пробу приготовленного раствора объемом 20,00 мл использовали для стандартизации раствора ЭДТА и титровали при рН 10,0. На титрование израсходовали 19,75 мл раствора ЭДТА. Вычислить концентрацию (моль/л) раствора ЭДТА.
- 12. Определить молярную концентрацию, титр и титр по определяемому веществу $T_{A/B}$ рабочего раствора A по результатам титрования навески установочного вещества C.

Вари-	Рабочий раствор А		Установочн	Вещест-	
ант	формула	объем, мл	формула	масса, г	во В
1	$Hg(NO_3)_2$	19,31	NaCl	0,0610	KBr
2	Na ₂ H ₂ ЭДТА	18,46	Zn	0,0131	Co
3	Na ₂ H ₂ ЭДТА	20,15	CaCO ₃	0,1035	CaO

- 13. 10,00 мл 0,1 M ZnSO₄ (K = 1,018) поместили в мерную колбу вместимостью 100,0 мл и довели раствор до метки водой. На титрование 20,00 мл полученного раствора израсходовали 20,80 мл ЭДТА. Рассчитать молярную концентрацию ЭДТА.
- 14. На титрование 0,1035 г $CaCO_3$ израсходовали 20,15 мл раствора ЭДТА. Рассчитать молярную концентрацию ЭДТА и титр ЭДТА по CaO.
- 15. Какую массу $Co(NO_3)_2 \cdot 6H_2O$, содержащего около 7% индифферентных примесей, следует взять для анализа, чтобы на ее титрование потребовалось около 10,0 мл 0,100 М ЭДТА?
- 16. Какую массу NaBr, содержащего около 10 % индифферентных примесей, следует взять для анализа, чтобы на ее титрование потребовалось 20,00 мл $0,1000 \text{ M Hg}(\text{NO}_3)_2 \text{ (}f_{\text{экв}}=1/2\text{)}?$
- 17. Какую массу металлического цинка (99,99%) следует взять для приготовления 100,0 мл раствора, чтобы на титрование 20,00 мл его расходовалось 20,00 мл 0,2000 М ЭДТА.
- 18. Навеску образца, содержащего 28% хлора, оттитровали 18,75 мл $0,05015 \text{ M Hg}(\text{NO}_3)_2$ ($f_{\text{экв.}}$ =1/2). Рассчитать массу образца, взятую для анализа.
- 19. Навеску руды массой 0,9000 г оттитровали 19,50 мл 0,1015 М раствором ЭДТА. Вычислить массовую долю (%) цинка в руде.
- 20. Навеску поваренной соли массой 2,8530 г растворили в мерной колбе вместимостью 500,0 мл. На титрование 20,00 мл раствора израсходовали

- $18,95 \text{ мл } 0,1010 \text{ M Hg(NO}_3)_2 \text{ (}f_{\text{экв}}.=1/2\text{)}.$ Рассчитать массовую долю (%) NaCl в образце.
- 21. Навеску технического бромида калия массой 0,1506 г растворили в воде и оттитровали 22,00 мл 0,05 М $Hg(NO_3)_2$ ($f_{_{9KB}}$.=1/2, K=1,055). Вычислить массовую долю (%) КВг в образце.
- 22. Рассчитать массу смеси, содержащей 45,00% KBr, 48,00% NaBr и 7% индифферентных примесей, чтобы при меркуриметрическом титровании ее было израсходовано 21,25 мл 0,04966 н. $Hg(NO_3)_2$ ($f_{9KB} = 1/2$).
- 23. Определить концентрацию (г/л) раствора $Bi(NO_3)_3$, если на титрование 20,00 мл его израсходовано 17,26 мл 0,06905 М ЭДТА.
- 24. Какая масса КСN содержалась в 500,0 мл раствора, если на титрование 20,00 мл его до появления неисчезающей мути затрачено 20,05 мл 0,1215 М AgNO₃? Учесть образование в точке эквивалентности комплекса [Ag(CN)₂].
- 25. На титрование 20,00 мл раствора $NiCl_2$ израсходовано 21,22 мл 0,02065 М ЭДТА. Определить концентрацию (г/л) раствора соли никеля.
- 26. Раствор солей кальция и магния разбавили водой до 100,0 мл. На титрование 20,00 мл аликвоты с эриохромом черным Т израсходовали 18,45 мл 0,01020 М ЭДТА, а на титрование такой же аликвоты с мурексидом затратили 8,22 мл ЭДТА. Какая масса Са и Мg содержалась в исходном растворе?
- 27. На титрование 50,00 мл жесткой воды в аммиачном буферном растворе в присутствии индикатора арсеназо I израсходовали 15,00 мл 0,0100 М ЭДТА. На титрование такой же аликвоты после добавления избытка NaOH в присутствии индикатора кальцеина израсходовано 10,00 мл 0,0100 М раствора ЭДТА. Определить: а) молярные концентрации ионов кальция и магния в этой воде; б) общую жесткость воды, выразив в мг/л CaCO₃. (М(CaCO₃) = 100,19 г/моль).
- 28. Растворено 2,0250 г доломита. Раствор после отделения нерастворимого остатка и полуторных оксидов (Fe₂O₃ и Al₂O₃) помещен в мерную колбу вместимостью 500 мл и разбавлен водой до метки. На титрование 25,00 мл этого раствора после разбавления водой и соответствующей обработки нейтрализации, введения индикатора и буферного раствора расходуется 20,20 мл 0,1025 М раствора ЭДТА. Из той же колбы взято 100,0 мл раствора и в нем количественно осажден Ca²⁺, а фильтрат (после соответствующей обработки) оттитрован тем же рабочим раствором ЭДТА. Его на это израсходовано 38,50 мл. Вычислить процентное содержание CaO и MgO в образце.
- 29. Для комплексонометрического определения кальция и магния 2,0850 г минерала после выполнения необходимых операций для отделения мешающих определению составных частей растворено и разбавлено водой до метки в мерной колбе вместимостью 250 мл. Из этого раствора в титровальные колбы взяты две аликвотные части 25,00 и 100,0 мл. На титрование первой (в надлежащих условиях) израсходовано 11,20 мл 0,05240 М ЭДТА, а на титрование второй (после количественного отделения Ca²⁺) израсходовано 21,65 мл. Вычислить процентное содержание Са и Мg в образце.

- 30. На титрование 25,00 мл раствора $Ba(NO_3)_2$ в присутствии $Na_2MgЭДТА$ затратили 18,05 мл 0,1 М ЭДТА (K = 0,9878). Вычислить концентрацию (г/л) исследуемого раствора $Ba(NO_3)_2$.
- 31. При определении железа в сточной воде объемом 200,0 мл его окислили до трехвалентного, осадили аммиаком, отделили от раствора и после растворения в HCl оттитровали 5,14 мл 0,005 М ЭДТА (K = 1,101). Найти общую концентрацию (мг/л) железа в воде.
- 32. При определении карбонатной жесткости на титрование 200,0 мл воды израсходовано 10,25 мл 0,1 М HCl (K = 0,9845). При определении общей жесткости на 100,0 мл той же воды израсходовано 15,12 мл 0,05 М ЭДТА (K = 0,8918). Вычислить карбонатную, общую и постоянную жесткость воды (ммоль/л).
- 33. Вычислить массовую долю (%) брома в техническом бромиде натрия, если на титрование раствора, полученного из навески массой 0,5569 г его, израсходовано 21,20 мл 0,2500 М $Hg(NO_3)_2$ ($f_{_{3KB}} = 1/2$).
- 34. Для определения хлоридов навеску кальцинированной соды массой 1,652 г растворили в воде, и объем довели до 100,0 мл. На титрование пробы 20,00 мл полученного раствора после нейтрализации азотной кислотой затратили 18,38 мл 0,01 М $Hg(NO_3)_2$ ($f_{_{3KB}} = 1/2$, K = 1,075). Вычислить массовую долю (%) хлоридов в пересчете на NaCl в исследуемом образце.
- 35. Для определения суммы лантаноидов в фосфорсодержащем материале взяли навеску массой 0,2043 г. После растворения ее и отделения мешающих ионов раствор оттитровали из микробюретки 1,82 мл 0,01078 М ЭДТА с ксиленоловым оранжевым. Рассчитать массовую долю (%) суммы лантаноидов в пробе в пересчете на лантан.
- 36. Какая массовая доля (%) свинца в тройном сплаве Pb-Na-K, если навеску его массой 2,885 г растворили и раствор разбавили до 250,0 мл, а затем 25,00 мл этого раствора оттитровали 12,28 мл 0,1 М ЭДТА (К = 1,086) с ксиленоловым оранжевым?
- 37. Мочу пациента, собранную в течение суток, разбавили до 2,00 л. После доведения рН полученного раствора до 10,00 оттитровали его аликвоту объемом 10,00 мл 26,80 мл 0,0035 М раствора ЭДТА. Из второй аликвоты раствора объемом также 10,00 мл выделили кальций в виде CaC₂O₄, растворили осадок в кислоте и оттитровали, израсходовав 11,60 мл раствора ЭДТА. Определите, соответствует ли найденное количество (мг) магния и кальция нормальному содержанию этих элементов в моче здоровых людей: 15–300 и 50–400 мг соответственно.
- 38. Вычислить массовую долю (%) CaCO₃ и MgCO₃ в известняке, если после растворения 1,000 г его получили 100,0 мл раствора, на титрование 20,00 мл которого для определения суммы Са и Mg затратили 19,25 мл 0,5140 М ЭДТА, а на титрование Са в отдельной пробе (20,00 мл) израсходовали 6,25 мл того же раствора ЭДТА.
- 39. Навеску удобрения массой 4,026 г разложили действием минеральной кислоты, и объем раствора довели до 250,0 мл. Пробу 50,00 мл фильтрата после

удаления нерастворимого остатка нейтрализовали NaOH до появления мути, добавили ацетатный буферный раствор до рН 4,6 и довели до объема 250,0 мл. Для определения кальция пробу 25,00 мл полученного раствора оттитровали 10,02 мл 0,05121 М ЭДТА с флуорексоном. На титрование такой же пробы раствора с хром темно-синим для определения суммарного содержания кальция и магния израсходовали 18,14 мл того же раствора ЭДТА. Вычислить массовые доли (%) СаО и МgO в удобрении.

- 40. В процессе анализа каолина навеску его массой 0,5108 г сплавили с Na_2CO_3 и $Na_2B_4O_7$, плав растворили в разбавленной HCl и объем раствора довели до 250,0 мл. Пробу 100,0 мл раствора нейтрализовали, добавили уротропин, отфильтровали выпавшую в осадок кремниевую кислоту, промыли теплым раствором уротропина; фильтрат и промывные воды оттитровали 10,16 мл 0,005040 М ЭДТА с индигокармином в присутствии 20%-ного КОН. Вычислить массовую долю (%) СаО в каолине.
- 41. Раствор, приготовленный из навески феррита состава Fe₂O₃–NiO–CoO массой 0,6018 г, пропустили через сильноосновный анионит и применили для разделения элементов следующие элюементы: в 9 М HCl на анионите удерживаются соединения железа и кобальта, в 4 М HCl происходит вымывание кобальта, а в 1 М HCl вымывание железа. В результате разделения получены растворы ионов, которые были оттитрованы комплексонометрически. При этом на титрование никеля было затрачено 19,53 мл 0,05 М ЭДТА (К = 1,102), на титрование кобальта 4,81 мл 0,01 М ЭДТА (К = 0,9906). Определить массовые доли (%) оксидов в феррите.
- 42. Вычислить объем пробы, который надо взять на анализ из раствора, содержащего 0,67 г/л свободного комплексона III (M = 336,21 г/моль) и некоторое количество его комплекса с железом, если на титрование этой пробы в присутствии ксиленолового оранжевого при pH 1,0 будет затрачено 20,00 мл 0,01000 M Bi(NO₃)₃.
- 43. Для определения свободного комплексона III в присутствии его комплексов с железом и медью в растворах, полученных в ходе отмывки поверхности нагрева котла от солевых отложений, применили титрование пробы 50,00 мл при рН 4–4,5 раствором сульфата меди в присутствии индикатора ПАР. Результаты титрования нескольких проб приведены в таблице:

Проба	V(CuSO ₄), мл	C(CuSO ₄), моль/л	Проба	V(CuSO ₄), мл	C(CuSO ₄), моль/л
1	10,15	0,05081	3	20,18	0,01019
2	16,41	0,02542	4	11,47	0,02112

Вычислить концентрацию (г/л) свободного Na₂H₂ЭДТА в исследуемых пробах.

- 44. Какая масса ртути содержалась в 250,0 мл раствора, если после прибавления к 50,00 мл его 25,00 мл 0,01000 М ЭДТА избыток последнего оттитровали 10,50 мл 0,01000 М MgSO₄? *Ответ*: 145,4 мг.
- 45. Для контроля отмывки поверхности нагрева котла от солевых отложений с помощью комплексона определили содержание свободного комплексона III в присутствии его комплекса с железом. Для этого титровали последователь-

но ряд проб объемом 50,00 мл, подкисленных азотной кислотой до рН 1, используя в качестве титранта раствор нитрата висмута в присутствии ксиленолового оранжевого. Результаты титрования приведены в таблице:

Вариант	Проба 1		Проба 2		Проба 3	
	V(Bi), C(Bi)		V(Bi)	C(Bi)	V(Bi),	C(Bi)
	МЛ	моль/л	МЛ	моль/л	МЛ	моль/л
1	19,50	0,002009	9,65	0,002009	4,82	0,002009
2	12,18	0,005162	10,49	0,005162	5,11	0,005162
3	16,91	0,002517	14,12	0,002517	0,84	0,002517

Проследите за ходом отмывки путем расчета концентрации свободного комплексона Na_2H_2 ЭДТА (г/л) в трех последовательных пробах.

- 46. К 10,00 мл раствора $NiCl_2$ добавили дистиллированную воду, аммиачный буферный раствор и 20,00 мл 0,01085 М раствора ЭДТА. Избыток ЭДТА оттитровали 0,01292 М $MgCl_2$, на титрование израсходовали 5,47 мл. Рассчитать исходную концентрацию (г/л) раствора $NiCl_2$.
- 47. Растворением навески $Hg(NO_3)_2 \cdot nH_2O$ массой 0,7634 г приготовили 250,0 мл раствора, к 25,00 мл которого прибавили 50,00 мл 0,01007 М ЭДТА. На титрование избытка ЭДТА ушло 23,83 мл 0,01178 М $ZnSO_4$. Вычислить массовую долю (%) $Hg(NO_3)_2$ в образце, определить число молекул воды в кристаллогидрате.
- 48. К подкисленному раствору, полученному растворением навески образца массой 0,5051 г, содержащего основной карбонат висмута, добавили избыток 0,0500 М раствора ЭДТА, равный 20,00 мл. После доведения рН до 9,30 избыток ЭДТА оттитровали 0,0500 М ZnSO₄ в присутствии эриохрома черного Т. Рассчитайте массовую долю висмута (%), если на титрование ЭДТА израсходовано 9,20 мл ZnSO₄.
- 49. После растворения сплава массой 0,1101 г алюминий осадили в виде бензоата, осадок отделили и растворили в хлороводородной кислоте. К полученному раствору добавили 20,00 мл 0,1 М ЭДТА (К = 1,001), нейтрализовали до рН 6,5 и оттитровали 11,40 мл 0,09899 М хлорида железа(III) по сульфосалициловой кислоте. Вычислить массовую долю (%) в сплаве.
- 50. Образец хлорида алюминия массой 0,9250 г растворили в воде и получили 250,0 мл раствора. К 15,00 мл полученного раствора прибавили 25,00 мл раствора ЭДТА с молярной концентрацией 0,02340 моль/л и на титрование полученного раствора пошло 4,50 мл 0,05 М раствора магния сульфата (К = 0,9115). Рассчитать массовую долю хлорида алюминия (%) в образце.
- 51. Для определения массы свинца в пробе методикой предусмотрено использование титрантов с молярной концентрацией 0,05 М. К пробе, содержащей соли свинца, добавили 25,00 мл раствора ЭДТА (K = 1,020). Избыток не вступившего в реакцию ЭДТА оттитровали 10,05 мл сульфата раствора магния (K = 0,8900). Вычислить массу свинца в пробе.
- 52. Образец сульфата натрия массой 3,0550 г растворили в воде и получили 500,0 мл раствора. К 10,00 мл полученного раствора прибавили 20,00 мл рас-

- твора хлорида бария с молярной концентрацией 0,05025 моль/л. На титрование полученного раствора пошло 11,25 мл 0,05 М раствора ЭДТА (K = 1,025). Рассчитать массовую долю сульфата натрия (%) в образце.
- 53. Хром (d = 7,10 г/см³), выделенный на поверхности площадью 9,75 см², растворили в соляной кислоте; раствор затем разбавили точно до 100,0 мл. аликвотную часть раствора 25,00 мл раствора забуферили до рН 5 и добавили 50,00 мл 0,00862 М раствора ЭДТА. На титрование избытка ЭДТА потребовалось 7,36 мл 0,01044 М раствора Zn²⁺. Рассчитайте среднюю толщину хромового покрытия.
- 54. Навеску удобрения массой 2,5030 г разложили действием минеральной кислоты, объем полученного раствора довели 250,0 мл и профильтровали. В мерную колбу вместимости 100,0 мл поместили 50,00 мл фильтрата, туда же добавили 25,00 мл 0,1 М $Bi(NO_3)_3$ (К = 0,9789) и довели раствор до метки. В результате взаимодействия ортофосфата в кислой среде с $Bi(NO_3)_3$ образуется осадок

$$Bi(NO_3)_3 + H_3PO_4 = BiPO_4 \downarrow + 3HNO_3$$

который вновь отделили фильтрованием. В фильтрате объемом 50,00 мл оттитровали избыток ионов ${\rm Bi}^{3+}$ 15,00 мл 0,05 М ЭДТА (K = 1,001) в присутствии пирокатехинового фиолетового. Определить массовую долю (%) ${\rm P}_2{\rm O}_5$ в удобрении.

- 55. Навеску феррита, состоящего из Fe₃O₃, NiO и Al₂O₃, массой 0,5192 г растворили, отделили железо экстракцией эфиром в виде купфероната и приготовили 100,0 мл раствора. Для определения суммы никеля и алюминия в пробе объемом 20,00 мл к ней добавили 50,00 мл 0,05 М ЭДТА (К = 0,9815), избыток которого оттитровали 18,12 мл 0,05 М ZnSO₄ (К =1,071). Затем в той же пробе замаскировали алюминий с помощью КF и на титрование выделившегося ЭДТА затратили 16,48 мл того же раствора ZnSO₄. Определить массовую долю (%) оксидов в феррите.
- 56. Раствор, полученный из навески феррита состава Fe_2O_3 —BaO массой 0,3822 г, пропустили для отделения железа через колонку с анионитом. Полученный раствор нейтрализовали до pH 10,0, ввели 25,00 мл 0,025 М ЭДТА (K = 0,9816), избыток которого оттитровали 0,02 М MgCl₂ (K = 1,096) с индикатором эриохром черным T, затрачивая 20,92 мл. Вычислить массовые доли (%) оксидов в феррите.
- 57. Какую массу алюмосиликата, содержащего около $20\%~{\rm Al_2O_3}$, следует взять для анализа, чтобы после сплавления, соответствующей обработки пробы и добавления избытка Na₂MgЭДТА магний был оттитрован $10,0~{\rm M}$ $0,100~{\rm M}$ ЭДТА?
- 58. На титрование 20,00 мл раствора $Hg(NO_3)_2$ после добавления избытка $Na_2MgЭДТА$ и протекания реакции замещения

$$MgЭДТА^{2-} + Hg^{2+} = HgЭДТА^{2-} + Mg^{2+}$$

затрачено 19,85 мл 0,05 М ЭДТА (K = 1,055). Вычислить концентрацию (Γ/π) раствора $Hg(NO_3)_2$.

- 59. Какая масса натрия содержалась во взятой пробе раствора, если после осаждения его в виде $NaZn(UO_2)_3(CH_3COO)_9 \cdot 6H_2O$ полученный осадок отделили, растворили и оттитровали цинк 20,85 мл 0,01 М ЭДТА (К = 0,9194)?
- 60. При анализе пробы производственных сточных вод объемом 100,0 мл сульфат-ионы осадили раствором хлорида бария, осадок сульфата бария отфильтровали, промыли и растворили в 30,00 мл 0,025 М ЭДТА (K = 1,001). Определить концентрацию SO_4^{2-} -ионов (мг/л).
- 61. Из навески $BaCl_2 \cdot 2H_2O$ массой 1,099 г приготовили 100,0 мл раствора, к 20,00 мл которого добавили $Na_2MgЭДТА$. На титрование образовавшейся смеси затрачено 17,65 мл 0,05085 М ЭДТА. Вычислить массовую долю (%) $BaCl_2$ в образце, полагая, что при титровании бария в присутствии магния n(Ba) = n(ЭДТА). Сравнить рассчитанное значение с теоретическим для $BaCl_2 \cdot 2H_2O$.
- 62. Ионы серебра, содержавшиеся в 25,00 мл пробы, связали в цианидный комплекс, добавив избыток раствора [Ni(CN)₄]²⁻. На титрование выделившихся ионов никеля израсходовали 43,70 мл 0,0240 М раствора ЭДТА. Напишите уравнения реакций и рассчитайте концентрацию (г/л) серебра в растворе пробы.
- 63. К раствору, полученному после растворения навески анализируемой пробы массой 0,1500 г, содержавшей галлий (III), добавили буферный раствор с рН 10,00 и избыток MgY²⁻. На титрование выделившегося Mg(II) с эриохромом черным Т израсходовали 5,91 мл 0,0701 М раствора ЭДТА. Рассчитайте массовую долю (%) галлия в навеске. Назовите способ титрования и напишите уравнение реакции.
- 64. Сульфат, содержащийся в 1,515 г пробы, осадили методом гомогенного осаждения, добавив избыток раствора ВаЭДТА и медленно подкислив для осаждения ионов бария. По окончании осаждения к раствору добавили буферный раствор с рН 10,00 и разбавили его до 250,0 мл. На титрование 25,00 мл прозрачного раствора потребовалось 28,70 мл стандартного 0,0154 М раствора Мg(II). Рассчитайте массовую долю (%) Na₂SO₄·10H₂O в пробе.
- 65. Пробу массой 3,65 г, содержащую бромат и бромид, растворили в 250,0 мл воды. К аликвоте полученного подкисленного раствора объемом 25,00 мл добавили нитрат серебра; осадок бромида серебра отфильтровали, промыли и растворили в аммиачном растворе K₂[Ni(CN)₄]. Выделившиеся при растворении ионы никеля оттитровали, затратив 26,70 мл 0,0208 мл раствора ЭДТА. В другой аликвоте исходного раствора объемом 10,00 мл бромат восстановили до бромида мышьяком (III); добавили нитрат серебра и на титрование ионов никеля, выделившихся в результате реакции AgBr с K₂[Ni(CN)₄] израсходовали 21,90 мл 0,0208 М раствора ЭДТА. Рассчитайте массовые доли (%) бромида и бромата натрия в анализируемой пробе.
- 66. Навеску удобрения массой 2,503 г обработали минеральной кислотой и объем полученного раствора довели до 250,0 мл, осадок отфильтровали; 50,00 мл фильтрата поместили в мерную колбу вместимостью 100,0 мл, туда же добавили 25,00 мл 0,1 М Bi(NO₃)₃ (K = 0,9789) и довели раствор до метки.

В результате взаимодействия ортофосфорной кислоты с $Bi(NO_3)_3$ образовался осадок $BiPO_4$ в соответствии с реакцией

$$Bi(NO_3)_3 + H_3PO_4 = BiPO_4 \downarrow + 3HNO_3$$

который вновь отделили фильтрованием. В 50,00 мл фильтрата оттитровали избыток ионов ${\rm Bi}^{3+}$ 15,00 мл 0,05 М ЭДТА (К = 1,001) в присутствии пирокатехинового фиолетового. Определить массовую долю (%) ${\rm P}_2{\rm O}_5$ в удобрении.

67. Из навески образца массой 3,924 г, содержащей свинец, магний, цинк и индифферентные примеси, приготовили 250,0 мл раствора. К пробе раствора объемом 25,00 мл добавили цианид для связывания цинка в комплекс [Zn(CN)₄]²⁻; оставшиеся в растворе магний и свинец оттитровали 20,42 мл 0,05037 М ЭДТА. Затем в этом же растворе замаскировали свинец с помощью 2,3-димеркаптопропанола и выделившийся при этом ЭДТА оттитровали 18,47 мл 0,01012 М MgCl₂. Для демаскирования цинка к той же пробе прибавили формальдегид:

 $[Zn(CN)_4]^{2-} + 4HCOH + 4H_2O = Zn^{2+} + 4HOCH_2CN + 4OH^-$ и выделившийся цинк оттитровали 15,07 мл 0,05037 М ЭДТА. Вычислить массовые доли (%) свинца, магния и цинка в образце.

- 68. После растворения в азотной кислоте навески латуни массой 4,012 г осадок метаоловянной кислоты отделили, а из фильтрата и промывных вод приготовили 500,0 мл раствора. На титрование суммы свинца, цинка и меди в пробе объемом 10,00 мл израсходовали 49,29 мл 0,025 М ЭДТА (К = 0,9613). В другой порции объемом 25,00 мл раствора замаскировали медь тиосульфатом натрия и на титрование свинца и цинка затратили 21,33 мл того же раствора ЭДТА. В третьей порции раствора объемом 100,0 мл замаскировали медь и цинк цианидом и на титрование свинца израсходовали 10,26 мл ЭДТА той же концентрации. Определить массовую долю (%) компонентов латуни.
- 69. Какая масса миндальной кислоты $C_6H_5CO(OH)COOH$ (M=304,32 г/моль) содержится во взятой пробе, если в ходе анализа осадили $Cu[C_6H_5CH(OH)COO]_2$, осадок растворили и оттитровали медь (II) 20,25 мл 0,01000 М ЭДТА в присутствии мурексида.
- 70. К 10,00 мл исследуемого раствора, содержащего пиридин, добавили спиртовой раствор $CdCl_2$. Выпавший осадок $Cd(C_5H_5N)_2Cl_2$ отфильтровали, растворили и оттитровали 15,25 мл 0,01 М ЭДТА (K = 0,9918) с эриохром черным T в аммонийном буферном растворе. Вычислить концентрацию (г/л) пиридина в исходном растворе.
- 71. Какую массу препарата, содержащего 25% люминала $C_{12}H_{12}N_2O_3$ ($M=232,24\ \text{г/моль}$), надо взять для проведения анализа по следующей схеме: после растворения навески в щелочном растворе люминал следует осадить в виде $Hg(C_{12}H_{12}N_2O_3)_2$, добавив уксусную кислоту для нейтрализации и 50,00 мл 0,01000 М $Hg(ClO_4)_2$; полученную смесь довести до объема 100,0 мл, отфильтровать от осадка, из фильтрата взять пробу 20,00 мл, добавить к ней Na_2Mg ЭДТА в избытке и оттитровать 10,00 мл 0,00500 М ЭДТА с эриохром черным T в аммонийном буферном растворе?

- 72. Навеску медицинского препарата, содержащего хинингидрохлорид массой 0,5200 г, после растворения разбавили водой до 50,00 мл. Из пробы 20,00 мл. раствора в ацетоно-бензольной среде осадили $Cu(C_{20}H_{24}N_2O_2)Cl_2\cdot(CH_3COCH_3)_x$. Осадок отфильтровали, растворили в аммиаке и оттитровали медь 0,05000 М ЭДТА в присутствии мурексида, израсходовав 10,75 мл. Вычислить массовую долю (%) хинина $C_{20}H_{24}N_2O_2$ (M = 324,42 г/моль) в медицинском препарате.
- 73. Навеску m_1 пробы, состоящей из акрилонитрила и его полимера, растворили в метаноле, содержащем $BF_3O(C_2N_5)_2$ в качестве катализатора. К раствору добавили $Hg(CH_3COO)_2$ m_2 (г).

По окончании реакции:

$$H_2C=CH-CN + Hg(CH_3COO)_2 + CH_3OH = H_3C-OCH_2-CH-CN + CH_3COOH + HgCH_3COO$$

к раствору добавили аммонийный буфер и комплексонат цинка $Na_2ZnЭДTA$. Образующиеся в результате реакции между избытком ионов ртути (II) и комплексонатом цинка ионы цинка (II) оттитровали V мл раствора ЭДТА с концентрацией С. По данным таблицы рассчитать массовую долю (%) мономерного акрилонитрила $CH_2=CHCN$ (M=53.03 г/моль).

Вариант	т. г	т. г	<i>V</i> (ЭДТА),	С(ЭДТА),
Бариант	\mathbf{m}_1 , Γ	m ₂ , г	МЛ	моль/л
1	0,5036	0,1593	5,25	0,5017
2	0,8219	0,2361	8,19	0,04895
3	0,9816	0,2519	16,21	0,02512
4	0,4812	0,4014	18,15	0,02016
5	1,244	0,8195	19,48	0,05121
6	1,162	0,9218	20,82	0,04962

74. Для определения содержания кофеина $C_8H_{10}N_4O_2$ (M = 194,19 г/моль) в медицинском препарате навеску массой 0,4882 г растворили и довели объем до 50,00 мл. После отделения сопутствующих компонентов отобрали пробу 20,00 мл и добавили 25,00 мл 0,02000 М $KBiI_4$ и таким путем осадили кофеин по реакции:

$$(C_8H_{10}N_4O_2)H^+ + BiI_4^- = (C_8H_{10}N_4O_2)HBiI_4\downarrow$$

Осадок отфильтровали, фильтрат разбавили до 40,00 мл и в 20,00 мл его оттитровали избыток висмута 19,85 мл 0,01000 М ЭДТА до исчезновения желтой окраски KBiI₄. Рассчитать массовую долю (%) кофеина в препарате.

5. ОСАДИТЕЛЬНОЕ ТИТРОВАНИЕ

5.1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ И ПРИМЕРЫ РЕШЕНИЯ

При проведении осадительного титрования, основанного на реакциях ионного обмена, фактор эквивалентности также определяется стехиометрией взаимодействия между катионом и анионом. Так, для реакции

$$AgNO_3 + KCl = AgCl(T) + KNO_3$$

фактор эквивалентности нитрата серебра $f_{3KB}(AgNO_3) = 1$, а для реакции

$$2 \text{ AgNO}_3 + \text{K}_2 \text{CrO}_4 = \text{Ag}_2 \text{CrO}_4(T) + 2 \text{ KNO}_3$$

фактор эквивалентности того же вещества $f_{3KB}(AgNO_3) = 1/2$.

В наиболее распространенных методах осадительного титрования, используемых для определения галогенидов — аргентометрии и роданометрии — все стехиометрические коэффициенты реакций равны единице, и для них можно сделать то же заключение, что и для комплексонометрии, т.е. вместо числа молей эквивалента пользоваться понятием числа молей, а вместо молярной массы эквивалента — молярными массами веществ.

Выражение концентраций растворов, применяемых в осадительном титровании, ничем не отличается от других видов титрования.

Пример 5.1. В мерной колбе вместимостью 250 мл растворили 0,3180 г хлорида натрия и довели раствор дистиллированной водой до метки. Рассчитать титр полученного раствора и его молярную концентрацию.

Решение. Подставляем данные условия в определение титра:

$$T = \frac{m}{V} = \frac{0,3180}{250} = 0,001272 (г/мл).$$

Пересчитываем титр на молярную концентрацию, пользуясь данными о молярной массе хлорида натрия (M(NaCl) = 58,44 г/моль):

$$C(NaCl) = \frac{1000 \cdot T}{M(NaCl)} = \frac{1000 \cdot 0,001272}{58,44} = 0,02177$$
 (моль/л).

Также можно найти молярную концентрацию непосредственно по данным условия задачи:

$$C(NaCl) = \frac{m}{V \cdot M(NaCl)} = \frac{0,3180}{0,250 \cdot 58,44} = 0,02177 \text{ (моль/л)}.$$

В аргентометрии, одном из самых распространенных методов осадительного титрования, в качестве титранта используется нитрат серебра AgNO₃. Вещество не является первичным стандартом, и его стандартизуют по точным растворам или навескам галогенидов. Пример титрования по методу отдельных навесок.

Пример 5.2. На титрование навески чистого хлорида натрия массой 0,1535 г израсходовано 21,52 мл раствора титранта нитрата серебра. Определить титр нитрата серебра по хлориду натрия.

Решение. Заданную концентрацию находим по формуле:

$$T(AgNO_3/NaCl) = \frac{m(NaCl)}{V(AgNO_3)} = \frac{0,1535}{21,52} = 7,133 \cdot 10^{-3} \text{ (г/мл)}.$$

При прямом аргентометрическом титровании галогенидов пользуются как методом отдельных навесок, так и методом пипетирования. Пример расчета результата титрования по методу отдельных навесок:

Пример 5.3. Рассчитайте содержание NaCl (мг/мл) в рассоле, если на титрование 30,00 мл рассола потребовалось 15,60 мл 0,1000 М раствора AgNO₃.

Решение. Находим содержание NaCl (мг/мл) по формуле:

$$Q(\text{NaCl}), \text{мг/мл} = \frac{\text{C}(\text{AgNO}_3) \cdot \text{V}(\text{AgNO}_3) \cdot \text{M}(\text{NaCl})}{\text{V}_{\text{пp}}} = \frac{0,1000 \cdot 15,60 \cdot 58,44}{30,00} = 3,04 \, (\text{мг/мл}).$$

Пример расчета массы определяемого вещества, найденного аргентометрическим титрованием по методу пипетирования:

Пример 5.4. На титрование 10,00 мл раствора хлорида калия израсходовано 8,20 мл раствора нитрата серебра с концентрацией 0,10 М (K = 1,105). Рассчитать массу хлорида калия в объеме 200,0 мл анализируемого раствора.

Решение. Масса хлорида калия находится с учетом фактора аликвотирования при объеме колбы 200,0 мл и объеме аликвоты 10,00 мл ($f_a = 20$).

$$m(KCl) = \frac{C(AgNO_3) \cdot K \cdot V(AgNO_3) \cdot M(KCl)}{1000} \cdot f_a = \frac{0.1 \cdot 1.105 \cdot 8.20 \cdot 74.55}{1000} \cdot 20 = 1.351 (г).$$

Роданометрия, также распространенный метод осадительного титрования, относится к обратному титрованию. Соединения галогенидов обрабатывают избытком нитрата серебра, остаток которого затем оттитровывают роданидом (тиоцианатом) калия или аммония.

Пример 5.5. Навеску технического $BaCl_2$ массой 2,700 г растворили в мерной колбе вместимостью 250,0 мл. После прибавления к 25,00 мл полученного раствора 40,00 мл 0,1020 M $AgNO_3$ на титрование избытка $AgNO_3$ израсходовано 15,00 мл 0,09800 M NH_4SCN . Вычислить массовую долю (%) $BaCl_2$ в анализируемом образце.

Решение. При определении $BaCl_2$ методом обратного титрования протекают реакции:

$$BaCl_2 + 2 AgNO_3 = 2 AgCl(T) + Ba(NO_3)_2$$

$$AgNO_3 + NH_4SCN = AgSCN(T) + NH_4NO_3.$$

Число молей эквивалента BaCl₂ в навеске равно:

$$n(BaCl_2) = n(AgNO_3) - n(NH_4SCN).$$

Для расчета массы $BaCl_2$ необходимо учесть, что эквивалент $BaCl_2$, судя по первой реакции, представляет собой 1/2 $BaCl_2$ ($f_{9KB}=1/2$). Также следует помнить о том, что титрование проводилось с аликвотной частью исследуемого раствора.

$$\begin{split} &m(BaCl_2) = [n(AgNO_3) - n(NH_4NO_3)]M(1/2BaCl_2) \cdot \frac{V_{\kappa}}{V_a} = \\ &= \left(\frac{C(AgNO_3)V(AgNO_3)}{1000} - \frac{C(NH_4SCN)V(NH_4SCN)}{1000}\right) \cdot M(1/2BaCl_2) \cdot f_a = \\ &= \left(\frac{0,1020 \cdot 40,00}{1000} - \frac{0,09800 \cdot 15,00}{1000}\right) \cdot \frac{208,2}{2} \cdot 10 = 2,717 \, (\Gamma). \end{split}$$

Метод осадительного титрования используется не только для определения неорганических веществ, но и некоторых органических, даже в достаточно сложных объектах, после предварительного разделения.

Пример 5.6. После подкисления серной кислотой монохлоруксусную кислоту ClCH₂COOH из 150,0 мл фруктового сока проэкстрагировали диэтиловым эфиром. Кислоту затем реэкстрагировали раствором NaOH. После подкисления к полученному раствору добавили 40,00 мл 0,0489 M раствора AgNO₃. Избыток AgNO₃ оттитровали 0,0515 M раствором NH₄SCN, израсходовав 18,70 мл. Рассчитайте содержание в мг ClCH₂COOH (M = 94,45 г/моль) в 500,0 мл фруктового сока.

Решение. Монохлоруксусная кислота количественно реагирует с AgNO₃ в водном растворе:

$$ClCH_2COOH + Ag^+ + H_2O = AgCl + HOCH_2COOH + H^+.$$

Находим содержание кислоты в объекте, который анализировали целиком (экстрагировали, реэкстрагировали, добавляли реагенты), без аликвотирования.

$$\begin{split} m &= \frac{\text{C(AgNO}_3)\text{V(AgNO}_3) - \text{C(NH}_4\text{SCN)}\text{V(NH}_4\text{SCN)}}{1000} \cdot \text{M(ClCH}_2\text{COOH)} = \\ &= \frac{0,0489 \cdot 40,00 - 0,0515 \cdot 18,70}{1000} \cdot 94,45 = 93,78 \cdot 10^{-3} \; \Gamma = 93,78 \; \text{мг.} \end{split}$$

Анализируемый объект представлял собой 150,0 мл фруктового сока, однако в задаче спрашивается, сколько мг ClCH₂COOH находится в 500 мл сока.

$$m(ClCH_2COOH) = 93,78 \cdot \frac{500,0}{150.0} = 312,6 \text{ мг.}$$

5.2. ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Какая масса соли, формула которой указана в таблице, потребуется для приготовления V (мл) раствора с заданной в таблице молярной концентрацией эквивалента:

Вариант	Формула соли	V, мл	Концентрация
1	KC1	250,0	0,05000 M
2	$Hg_2(NO_3)_2 \cdot 2H_2O$	500,0	$0.05000 \text{ M} (f_{_{9K6}} = 1/2)$
3	NaCl	250,0	0,05000 M
4	AgNO ₃	250,0	0,1000 M
5*	K ₄ Fe(CN) ₆	500,0	$0,1000 \text{ M} (f_{_{9K6}} = 1/2)$

^{*} Расчет произвести в соответствии с уравнением реакции

$$2K_4Fe(CN)_6 + 3ZnSO_4 = K_2Zn_3[Fe(CN)_6]_2 + 3K_2SO_4.$$

2. Определить молярную концентрацию эквивалента (C_A), титр (T_A) и титр по определяемому веществу В ($T_{A/B}$) рабочего раствора А по результатам титрования навески установочного вещества, указанного в таблице:

Вариант	Установочное вещество		Рабочий ра	Вещество В	
Вариант	формула	навеска, г	формула	V, мл	Бещество Б
1	NaCl	0,1394	AgNO ₃	21,74	Nal
2	NaCl	0,1050	$Hg_2(NO_3)_2$	20,00	KBr
3	NaCl	0,0585	$Hg_2(NO_3)_2$	20,00	KC1
4*	Zn	0,1333	K ₄ Fe(CN) ₆	18,42	ZnSO ₄

^{*} Расчет произвести в соответствии с уравнением реакции

$$2K_4Fe(CN)_6 + 3ZnSO_4 = K_2Zn_3[Fe(CN)_6]_2 \downarrow + 3K_2SO_4.$$

3. Рассчитать молярную концентрацию эквивалента (C_A) , титр (T_A) и титр по определяемому веществу В $(T_{A/B})$ рабочего раствора А по следующим данным титрования раствора установочного вещества C:

Вариант	Раствор установочного вещества С				Рабочий раствор А		Вещество
Бариант	Состав	С	К	V, мл	Состав	V, мл	В
1	NaCl	0,0500 M	0,9640	20,00	$AgNO_3$	19,64	KSCN
2	NaCl	0,0500 M	1,106	25,00	$Hg_2(NO_3)_2$	20,16	NaBr
3*	ZnSO ₄	0,1000 M	0,9712	20,00	K ₄ Fe(CN) _e	24,05	Zn

^{*} Расчет произвести в соответствии с уравнением реакции

$$2K_4Fe(CN)_6 + 3ZnSO_4 = K_2Zn_3[Fe(CN)_6]_2 \downarrow + 3K_2SO_4.$$

- 4. Какую массу минерала, содержащего около 75% KCl, следует взять для приготовления 200,0 мл раствора, чтобы на титрование 250 мл его расходовалось 20,00 мл 0,1000 М $Hg_2(NO_3)_2$ ($f_{_{3KB}} = 1/2$)?
- 5. Какой объем рассола, содержащего около 60 г/л NaCl, следует взять для приготовления 200,0 мл раствора, чтобы на титрование 25,0 мл его расходовалось 20,00 мл 0,05000 M $Hg_2(NO_3)_2$ ($f_{_{3KB}}=1/2$)?

- 6. Какой объем раствора, содержащего 55 г/л NaCl, следует взять для приготовления 250,0 мл раствора, чтобы на титрование 20,00 мл его было затрачено 15,00 мл 0,1000 М раствора AgNO₃.
- 7. Рассчитайте массу навески NaCl для приготовления 250 мл раствора при условии, что на титрование 15,00 мл этого раствора затратили 12,50 мл 0,1000 M раствора AgNO₃.
- 8. Какую массу навески бромида калия следует взять для приготовления 250,0 мл раствора, на титрование 20,00 мл которого было израсходовано 17,50 мл 0,0500 М раствора $AgNO_3$?
- 9. На титрование 20,00 мл раствора NaCl (T(NaCl/Ag) = 0,005750) израсходовали 25,00 мл раствора $Hg_2(NO_3)_2$. Определить молярную концентрацию эквивалента и титр раствора $Hg_2(NO_3)_2$.
- 10. Какое вещество (NaBr или KBr) было взято для анализа, если на титрование 0,2332 г его по методу Мора было израсходовано 18,77 мл 0,1044 М раствора $AgNO_{3}$.
- 11. Какое вещество (NaCl или KCl) было взято для анализа, если на титрование 0.2542 г его было израсходовано 30.86 мл 0.1105 М раствора AgNO₃?
- 12. Какая масса KCl содержится в 250,0 мл раствора, если на титрование 25,00 мл его израсходовано 17,00 мл 0,05252 М $Hg_2(NO_3)_2$ ($f_{9KB} = 1/2$)?
- 13. Пробу рассола объемом 10,00 мл разбавили водой до 250,0 мл и 20,00 мл оттитровали меркурометрически с индикатором FeSCN²⁺. Вычислить концентрацию NaCl в рассоле (г/л), если на титрование затрачено 18,98 мл 0,04805 М раствора $Hg_2(NO_3)_2$ ($f_{3KB}=1/2$), а на титрование индикатора в «холостой» пробе -0,52 мл того же раствора $Hg_2(NO_3)_2$.
- 14. Навеску технического $BaCl_2$ массой 6,700 г растворили в мерной колбе вместимостью 100,0 мл. На титрование 25,00 мл раствора израсходовали 23,95 мл раствора $AgNO_3$ ($T(AgNO_3) = 0,008048$). Вычислить массовую долю (%) $BaCl_2$ в образце.
- 15. Навеску серебряного сплава массой 1,745 г растворили в HNO_3 , и раствор разбавили водой до объема 200,0 мл. На титрование 10,00 мл раствора потребовалось 11,75 мл 0,05 М NH_4SCN (K = 0,9344). Вычислить массовую долю (%) Ag в сплаве.
- 16. Навеску технического KBr массой 0,3838 г растворили в воде и раствор оттитровали 23,80 мл раствора $AgNO_3$ ($T(AgNO_3/Cl) = 0,003546$). Вычислить массовую долю (%) KBr в образце.
- 17. Навеску смеси NaCl и NaNO₃ марки «х.ч.» массой 0,8180 г растворили в мерной колбе вместимостью 200,0 мл. На титрование 20,00 мл раствора израсходовали 18,35 мл раствора AgNO₃ ($T(AgNO_3/KCl) = 0,003442$). Вычислить массовую долю (%) NaCl и NaNO₃ в смеси.
- 18. Рассчитайте массовые доли (%) NaCl и KCl в образце, если после растворения навески массой 0,1526 г на титрование полученного раствора израсходовано 25,00 мл 0,1000 М раствора AgNO₃.

- 19. Какую массу органического вещества, содержащего около 7% хлора, следует взять для анализа, чтобы после разложения образца на титрование хлорида расходовалось 18,00 мл 0,1000 M AgNO₃?
- 20. Рассчитайте массовую долю (%) брома в соединении. Навеску образца массой 0,7589 г обработали этанольным раствором КОН и провели омыление, затем раствор подкислили и разбавили до 250 мл. Полученный раствор объемом 10,00 мл оттитровали 0,05500 М раствора нитрата ртути (I) ($f_{3KB} = 1/2$), израсходовав 6,80 мл. На титрование индикатора $Fe(SCN)_n^{3-n}$ в контрольном опыте израсходовано 0,55 мл раствора $Hg_2(NO_3)_2$.
- 21. Рассчитайте массовую долю серебра (%) в сплаве, если после растворения навески массой 0,3178 г на титрование этого раствора затратили 24,50 мл 0,1000 М раствора KSCN.
- 22. Из колбы вместимостью 200,0 мл отобрали 15,00 мл раствора KCl, на титрование которого пошло 24,00 мл 0,1000 М раствора AgNO₃. Определите массу навески KCl, взятой для приготовления исходного раствора.
- 23. Навеску сплава массой 0,2500 г массовой долей серебра 70% растворили; на титрование полученного раствора израсходовали 16,50 мл раствора NH₄SCN. Вычислите молярную концентрацию раствора титранта.
- 24. Сколько граммов NaCl содержится в 100 мл раствора, на титрование которого израсходовали 18,50 мл 0,05000 M раствора нитрата ртути (I) ($f_{3KB} = 1/2$)?
- 25. Рассчитайте массовую долю хлорида (%) в образце галенита, если для полного осаждения хлорид-ионов из навески массой 0,8715 г NaCl затратили 14,75 мл 1,0000 М раствора AgNO₃.
- 26. Определите массовую долю серебра (%) в сплаве при условии, что после растворения навески сплава массой 0,4000 г объем раствора довели до 100,0 мл. На титрование 15,00 мл полученного раствора пошло 10,15 мл 0,0500 М раствора KSCN.
- 27. Раствор соли бария объемом 25,00 мл подкислили по метиловому красному и после добавления этилового спирта оттитровали ионы бария 22,50 мл 0,05080 М раствора Na₂HPO₄:

$$Ba^{2+} + HPO_4^{2-} = BaHPO_4 \downarrow$$

Определить концентрацию (г/л) бария в растворе.

- 28. Продукты сгорания органического вещества вместе с содержащимися в нем в качестве примеси мышьяка массой 2,00 г были поглощены щелочным раствором H_2O_2 . Образовавшийся арсенат натрия был оттитрован 15,85 мл 0,01 М $Pb(NO_3)_2$ (K = 0,9612) в присутствии пиридилазорезорцина. Вычислить массовую долю (%) As в образце, если в результате титрования образуется $Pb_3(AsO_4)_2$.
- 29. Растворили 7,500 г пробы, содержащей BaCl₂, BaI₂ и инертный материал, и разбавили раствор в мерной колбе до 250,0 мл. Аликвотную часть объемом 25,00 мл оттитровали 0,0847 М раствором AgNO₃. Индикатором служил адсорбционный индикатор бромфеноловый синий, меняющий окраску после количественного осаждения, когда выпадают и I⁻ и C1⁻. Аликвотную часть объемом 50,00 мл оттитровали раствором AgNO₃ с индикатором эозином, ад-

- сорбирующимся только после осаждения I^- . На первое титрование пошло 41,20 мл раствора $AgNO_3$, на второе 38,30 мл. Рассчитайте процентное содержание $BaCl_2$ и BaI_2 в исходной пробе.
- 30. Для достижения конечной течки титрования по методу Мора 0,2240 г пробы, содержащей только $BaCl_2$ и KBr, потребовалось 19,70 мл 0,100 М раствора $AgNO_3$. Рассчитайте процентное содержание каждого соединения в пробе.
- 31. Какую массу сплава, содержащего около 60% серебра, следует взять на анализ, чтобы после ее растворения и добавления 20,00 мл 0,2000 М NH₄SCN на титрование избытка NH₄SCN потребовалось 20,00 мл 0,1000 М AgNO₃?
- 32. Какую массу вещества, содержащего 63% NaCl и 37% KCl, следует взять для анализа, чтобы после добавления 40,00 мл 0,1000 М AgNO₃ избыток серебра мог быть оттитрован 15,00 мл раствора NH₄SCN в присутствии NH₄Fe(SO₄)₂ (1,00 мл раствора NH₄SCN эквивалентен 1,10 мл раствора AgNO₃).
- 33. К 25,00 мл раствора NaCl прибавили 50,00 мл 0,1100 М AgNO₃, разбавили водой до 100,0 мл, отобрали на анализ 50,00 мл и оттитровали 5,23 мл 0,09800 М KSCN. Какая масса NaCl содержалась в 400,0 мл первоначального раствора?
- 34. Какая масса $BaCl_2$ содержится в 250,0 мл раствора, если после прибавления к 25,00 мл его 40,00 мл 0,1020 M $AgNO_3$ на обратное титрование избытка $AgNO_3$ израсходовано 15,00 мл 0,09800 M NH_4SCN ?
- 35. В мерной колбе вместимостью 250,0 мл растворили 2,002 г технического KBr. К 25,00 мл раствора прибавили 50,00 мл 0,05560 М $Hg_2(NO_3)_2$ ($f_{_{3KB}}=1/2$). На титрование избытка $Hg_2(NO_3)_2$ израсходовали 21,02 мл раствора NaCl (T=0,003522). Вычислить массовую долю (%) KBr в образце.
- 36. Для определения хлоридов навеску кальцинированной соды массой 3,256 г растворили в воде, раствор нейтрализовали азотной кислотой и довели объем до 200,0 мл. К 20,00 мл полученного раствора прибавили 50,00 мл 0,01 М AgNO₃ (К = 0,9854). На титрование избытка AgNO₃ израсходовали 21,48 мл раствора NH₄SCN (Т (NH₄SCN/AgNO₃) = 0,001952). Вычислить массовую долю (%) хлоридов в пересчете на NaCl в исследуемом образце.
- 37. Навеску смеси КСl и NaCl массой 1,479 г растворили в мерной колбе вместимостью 250,0 мл. К 25,00 мл полученного раствора прилили 50,00 мл 0,1 М AgNO₃ (K = 0,9580). На титрование избытка AgNO₃ израсходовали 23,50 мл 0,1 М KSCN (K = 1,256). Вычислить массовую долю (%) КСl в смеси.
- 38. Рассчитайте массовую долю (%) КВг в образце. Навеску технического КВг массой 1,2550 г растворили в мерной колбе вместимостью 250,0 мл; к 15,00 мл этого раствора добавили 25,00 мл 0,05000 М раствора нитрата ртути (I) ($f_{3KB} = 1/2$). Избыток $Hg_2(NO_3)_2$ оттитровали 0,05000 М раствором NaCl, израсходовав 15,00 мл.
- 39. Рассчитайте массу навески BaCl₂, содержащуюся в 200,0 мл раствора, если после прибавления к 20,00 мл этого раствора 35,00 мл 0,1105 М раствора

- $AgNO_3$ на обратное титрование избытка $AgNO_3$ израсходовано 20,50 мл 0,1015 М раствора NH_4SCN .
- 40. Рассчитайте массу навески сплава, содержащего 40% серебра, если после растворения сплава добавили 25,25 мл 0,1575 М раствора NH₄SCN и избыток NH₄SCN оттитровали 0,1000 М раствором AgNO₃, израсходовав 20,00 мл.
- 41. К раствору, полученному растворением 0,1224 г цинковых белил, прибавлено 50,00 мл раствора $K_4[Fe(CN)_6]$, на титрование избытка которого израсходовано 12,82 мл раствора $ZnSO_4$. Вычислить массовую долю (%) ZnO в белилах, если $T(K_4[Fe(CN)_6]) = 0,008517$ г/мл, а 1,00 мл его эквивалентен 1,18 мл раствора $ZnSO_4$ (при титровании образуется $K_2Zn_3[Fe(CN)_6]_2$).
- 42. К раствору, полученному при растворении 0,2130 г сплава в кислоте, добавили 40,00 мл 0,0932 М раствора $K_4[Fe(CN)_6]$. Через две минуты, необходимые для образования осадка $K_2Zn_3[Fe(CN)_6]_3$, избыток $K_4[Fe(CN)_6]$ оттитровали, затратив 4,44 мл 0,1060 М раствора Zn^{2+} в присутствии дифениламина и небольшого количества $K_3[Fe(CN)_6]$ в качестве индикатора. Рассчитайте процентное содержание Zn в сплаве.
- 43. Монохлоруксусная кислота, используемая в качестве консерванта фруктовых соков, количественно реагирует с $AgNO_3$ в водном растворе:

 $ClCH_2COOH + Ag^+ + H_2O = AgCl + HOCH_2COOH + H^+.$

После подкисления серной кислотой $ClCH_2COOH$ из 150,0 мл фруктового сока проэкстрагировали диэтиловым эфиром. Кислоту затем перевели в водный раствор экстракцией 1 М раствором NaOH. После подкисления к раствору добавили 40,00 мл раствора $AgNO_3$, на титрование фильтрата и промывных вод после отделения AgCl израсходовали 18,70 мл 0,05150 М раствора NH_4SCN . На титрование холостого раствора, полученного аналогичным образом, затратили 38,00 мл раствора NH_4SCN . Сколько миллиграммов $ClCH_2COOH$ содержится в 100,0 мл пробы?

- 44. Какую массу монохлоруксусной кислоты (M = 94,50 г/моль) следует растворить в 500,0 мл воды, чтобы после обработки 20,00 мл полученного раствора спиртовым раствором КОН образовавшийся хлорид-ион осадить в виде AgCl добавлением 50,00 мл 0,1000 M AgNO₃ и на титрование избытка серебра затратить 18,50 мл 0,1000 M NH₄SCN.
- 45. Для определения содержания метилхлорида CH_3Cl ($M=50,49\,$ г/моль) в воздухе через поглотительную склянку с этиловым спиртом пропустили пробу объемом 2000 мл, затем в полученном растворе провели щелочной гидролиз и выделившиеся хлорид-ионы осадили в виде AgCl добавлением 20,00 мл 0,05 M AgNO₃ (K=1,085). На титрование избытка серебра было затрачено 15,50 мл 0,05 M NH₄SCN (K=0,9815). Вычислить концентрацию (г/л) CH_3Cl в воздухе.
- 46. Навеску иодоформа СНІ₃ массой 0,3501 г, содержащего индифферентные примеси, растворили в этиловом спирте и добавили 40,00 мл 0,1082 М раствора нитрата серебра и концентрированной азотной кислоты. Избыток нитрата серебра оттитровали 18,20 мл тиоцианата калия (T = 0,009699). Определить массовую долю (%) иодоформа в пробе, если М(СНІ₃) = 393,72 г/моль.

- 47. Для определения хлора в ацетофеноне $C_6H_5COCH_2Cl$ (M=154,6 г/моль) к навеске массой 0,6110 г после сжигания в токе кислорода и полного разложения добавили 50,00 мл 0,1 M AgNO₃ (K=0,9892) и на титрование избытка AgNO₃ затратили 11,08 мл 0,1 M NH₄SCN (K=1,043). Вычислить массовую долю (%) хлора в исследуемом объекте.
- 48. Навеску перхлордивинила C_4Cl_6 массой 0,1212 г (M = 260,79 г/моль) после сжигания с пероксидом водорода растворили в 250,0 мл разбавленной азотной кислоты. К 50,00 мл этого раствора добавили 25,00 мл 0,05 М AgNO₃ (K = 1,025), избыток которого оттитровали 13,24 мл 0,05 М KSCN (K = 1,107). Определить массовую долю (%) хлора в исследуемом образце и сравнить его с теоретическим.
- 49. Вычислить содержание солей КВг и КСІ (%) в образце, если навеска, равная 0,2500 г, растворена в 200,0 мл воды. К 50,00 мл этого раствора добавлено 20,00 мл избыток AgNO₃ оттитрован 10,00 мл NH₄SCN. К другой порции раствора объемом 50,00 мл добавлен избыток AgNO₃ и NH₄OH, образовавшийся осадок отфильтрован и промыт. К полученному осадку добавлены металлический цинк и вода; раствор прокипячен, осадок отфильтрован, к фильтрату добавлено 15,00 мл 0,05000 М раствора AgNO₃. Избыток AgNO₃ оттитрован 1,10 мл NH₄SCN. (1,00 мл AgNO₃ эквивалентен 1,10 мл NH₄SCN).
- 50. Навеску минерала массой 5,000 г сплавили с карбонатом натрия. После выщелачивания плава, фильтрования и нейтрализации раствор разбавили до 500,0 мл. В аликвотной части 50,00 мл осадили PbClF. Осадок отфильтровали, промыли и растворили в азотной кислоте. На титрование хлорида израсходовали 12,25 мл 0,1 М AgNO₃ (К = 0,9941). Вычислить массовую долю (%) фтора в пробе.
- 51. Из кормового концентрата массой 2,500 г отогнали фтор, из отгона приготовили 100,0 мл раствора. К пробе 25,00 мл его добавили этанол, индикатор морин и оттитровали фторид 12,25 мл 0,001667 М $KAl(SO_4)_2$ по реакции:

 $6NaF + KAl(SO_4)_2 + NaCl = Na_3AlF_6 \downarrow + KCl + 2Na_2SO_4.$

Вычислить массовую долю (%) фтора в образце.

- 52. 0,5100 г пестицида разложили сплавлением с карбонатом натрия и выщелачиванием плава горячей водой. Фторид, содержащийся в пробе, осадили затем в виде PbClF добавлением HCl и Pb(NO₃)₂. Осадок отфильтровали, промыли и растворили в 5%-ном растворе HNO₃. Хлорид-ион осадили добавлением 50,00 мл 0,2000 М раствора AgNO₃. Осадок AgCl покрыли слоем нитробензола, и избыток Ag⁺ оттитровали, затратив 7,42 мл 0,1760 М раствора NH₄SCN. Рассчитайте процентное содержание F и Na₂SeF₆ в пробе.
- 53. После растворения и соответствующей обработки 0,9860 г удобрения получили водный раствор, содержащий HPO_4^{2-} , который количественно осадили добавлением 40,00 мл 0,2040 М раствора $AgNO_3$. На титрование избытка Ag^+ в фильтрате и промывных водах после отделения осадка потребовалось 8,72 мл 0,1170 М раствора KSCN. Рассчитайте процентное содержание P_2O_5 в пробе.

- 54. Какую массу хлортетрациклина $C_{22}H_{23}O_8N_2Cl$ (M = 478,88 г/моль) следует взять для анализа, чтобы после разложения образца на титрование хлорида затратилось 20,00 мл 0,05000 M AgNO₃?
- 55. Какую массу хлортрианизена (хлорена) $C_{23}H_{21}O_3Cl$ (M=380,22 г/моль) необходимо разрушить сжиганием, чтобы после растворения неорганического осадка на титрование хлорид-ионов было затрачено 18,00 мл 0,1000 М $Hg_2(NO_3)_2$ ($f_{3KB}=1/2$) в присутствии $FeSCN^{2+}$ в качестве индикатора (поправка на индикатор составляет 0,50 мл того же раствора $Hg_2(NO_3)_2$).
- 56. Формальдегид из 5,0000 г протравы для семян отогнали с водяным паром и собрали в мерную колбу емкостью 500,0 мл. После разбавления водой до метки аликвотную часть объемом 25,00 мл обработали 30,00 мл 0,1210 М раствора КСN для превращения формальдегида в циангидрин калия:

$$K^+ + CH_2O + CN^- = KOCH_2CN.$$

Избыток KCN затем удалили добавлением 40,00 мл 0,1000 M раствора $AgNO_3$:

$$2CN^{-} + 2Ag^{+} = Ag_{2}(CN)_{2(TB,)}$$
.

На титрование избытка Ag^+ в фильтрате и промывных водах потребовалось 16,10 мл 0,134 M раствора NH_4SCN . Рассчитайте процентное содержание CH_2O в пробе.

- 57. Для определения фторида в салате 50 г его высушили и прокалили в присутствии CaO. Получившийся фторид кальция разложили кислотой в присутствии SiO₂, а образовавшийся SiF₄ отогнали. На титрование F^- в дистиллате по реакции образования ThF_{4(тв.)} затратили 7,62 мл 0,008930 М раствора Th(NO₃)₄; индикатором служил ализариновый красный. Рассчитайте содержание F^- в пробе в процентах.
- 58. Элементный Se, взвешенный в средстве от перхоти, определили, смешивая пробу $(5,00\,$ мл) с теплым аммиачным раствором, содержащим $45,00\,$ мл $0,02000\,$ M раствора $AgNO_3$:

$$6Ag^{+} + 3Se_{(TB.)} + 6NH_{3} + 3H_{2}O = 2Ag_{2}Se_{(TB.)} + Ag_{2}SeO_{3(TB.)} + 6NH_{4}^{+}.$$

Смесь затем обработали избытком азотной кислоты, в которой растворился Ag_2SeO_3 , но не растворился Ag_2SeO_3 . На титрование Ag^+ из Ag_2SeO_3 и избытка $AgNO_3$ по методу Фольгарда израсходовали 16,74 мл 0,0137 М раствора KSCN. Сколько миллиграммов Se содержалось в миллилитре пробы?

59. Из навески протравы для семян массой 2,500 г отогнали формальдегид с водяным паром, собрали в мерную колбу вместимостью 250,0 мл и разбавили водой до метки. Аликвотную часть раствора объемом 20,00 мл обработали 25,00 мл 0,1145 М раствора КСN, при этом образовался циангидрин калия:

$$K^+ + CH_2O + CN^- = KOCH_2CN.$$

Избыток КСN удалили добавлением 20,00 мл 0,0900 М раствора $AgNO_3$ (при этом образовался осадок AgCN). На титрование избытка $AgNO_3$ в фильтрате и промывных водах израсходовано 21,50 мл 0,1076 М NH_4SCN . Рассчитать массовую долю (%) CH_2O в пробе, если $M(CH_2O) = 30,03$ г/моль.

60. Навеску хлороформа CHCl₃ массой 0,1386 г обработали при нагревании в течение 1 ч спиртовым раствором КОН, при этом произошло омыление хло-

- роформа до KCl. Охлажденный и нейтрализованный азотной кислотой раствор довели до 200,0 мл. На титрование пробы объемом 20,00 мл после добавления 40,00 мл 0,01 М AgNO₃ (K = 1,087) затратили 10,28 мл 0,01 М NH₄SCN (K = 0,9118). Вычислить массовую долю (%) хлороформа в анализируемом продукте, если M(CHCl₃) = 119,38 г/моль.
- 61. К навеске n-хлорфенола (M = 128,56 г/моль) массой 0,1041 г после разложения до хлорида и других продуктов добавили 20,00 мл AgNO₃ (T(AgNO₃/Cl) = 0,002810). На титрование избытка AgNO₃ затратили 12,18 мл 0,06558 М NH₄SCN. Вычислить массовую долю (%) хлора в анализируемом образце. Сравнить его с теоретическим для C_6H_5OCl .
- 62. Какая масса анилина $C_6H_5NH_2$ содержалась во взятой пробе, если после осаждения $Cu(C_6H_5NH_2)_2(SCN)_2$ путем добавления избытка $CuSO_4$ и 50,00 мл 0,1 M NH_4SCN (K=1,042) смесь разбавили до 100,0 мл, отобрали 50,00 мл фильтрата и оттитровали непрореагировавший тиоцианат аммония 15,45 мл 0,1 M $AgNO_3$ (K=0,9815) по методу Фольгарда?
- 63. В 100,0 мл воды растворили навеску массой 0,9842 г ксантогената натрия. К 50,00 мл раствора добавили 50,00 мл 0,1 М AgNO₃ (K = 1,087) для осаждения нерастворимого $C_2H_5OCS_2Ag$:

 $C_2H_5OCS_2Na + Ag^+ = C_2H_5OCS_2Ag^{\downarrow} + Na^+$

Затем к смеси добавили 40,00 мл 0,1 М KSCN (K = 0,9816). На титрование избытка KSCN в присутствии $Fe(NO_3)_3$ затратили 16,98 мл того же раствора $AgNO_3$. Определить массовую долю (%) ксантогената натрия в образце, если M = 144,1818 г/моль.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Аналитическая химия. Проблемы и подходы. В 2-х т. / ред. Р. Кельнер и др. М.: Мир, АСТ, 2004. Т.1. 608 с.
- 2. Аналитическая химия. Проблемы и подходы. В 2-х т. / ред. Р. Кельнер и др. М.: Мир, АСТ, 2004. T.2. 728 с.
- 3. Лурье, Ю.Ю. Справочник по аналитической химии / Ю.Ю. Лурье. М.: АльянС, 2007. 447 с.
- 4. Васильев, В.П. Аналитическая химия: сборник вопросов, упражнений и задач / В.П. Васильев, Л.А. Кочергина, Т.Д. Орлова. М.: Дрофа, 2004. 318 с.
- 5. Дорохова, Е.Н. Задачи и вопросы по аналитической химии / Е.Н. Дорохова, Г.В. Прохорова. М.: Мир, 2001. 267 с.
- 6. Основы аналитической химии. Задачи и вопросы / В.И. Фадеева, Ю.А. Барбалат, А.В. Гармаш и др.; под ред. Ю.А. Золотова. М.: Высш. шк., 2004. 412 с.
- 7. Сборник задач по аналитической химии / Л.А. Кочергина, Т.Д. Орлова, Н.Г. Дмитриева и др.; под ред. М.И. Базанова. Иваново: Иван. гос. химтехнол. ун-т, 2006. 120 с.

приложение

Таблица П1

Молярные массы некоторых веществ

Формула	M(X)	Формула	M(X)	Формула	M(X)
Ag	107,868	Н	1,00794	N_2O_3	76,0116
AgNO ₃	169,873	H ₂ O	18,0153	N_2O_5	108,010
Al	26,9815	H_2O_2	34,0147	$(NH_4)_2SO_4$	132,14
Al_2O_3	101,961	$H_2C_2O_4$	90,035	Na	22,9898
As ₂ O ₃	197,841	HC1	36,461	Na ₂ B ₄ O ₇	201,219
Ba	137,327	HNO ₃	63,013	NaBr	102,894
BaCO ₃	197,336	H ₃ PO ₄	97,995	NaBrO ₃	150,892
BaCl ₂	208,232	H_2S	34,08	Na ₂ CO ₃	105,989
$Ba(NO_3)_2$	261,337	H ₂ SO ₄	98,08	Na ₂ C ₂ O ₄	133,999
BaO	153,326	Hg	200,59	NaCl	58,443
BaSO ₄	233,39	$Hg(NO_3)_2$	326,60	NaHCO ₃	84,007
Bi	208,98	I_2	253,809	Na ₂ HPO ₄	141,959
$Bi(NO_3)_3$	394,995	KBr	119,002	NaNO ₃	84,9947
Br	79,904	KCN	65,116	Na ₂ O	61,9789
С	12,011	K ₂ CO ₃	138,206	NaOH	39,9971
CH ₂ O	30,026	KCl	74,551	Na ₃ PO ₄	163,941
C_5H_5N	79,10	KClO ₃	122,550	Na ₂ SO ₃	126,04
C ₆ H ₅ OH	94,11	K ₂ Cr ₂ O ₇	294,185	Na ₂ SO ₄	142,04
Ca	40,078	KH ₂ PO ₄	136,086	$Na_2S_2O_3$	158,11
CaCO ₃	100,087	KHC ₈ H ₄ O ₄	204,22	Ni	58,69
$Ca(H_2PO_4)_2$	136,057	$K_4Fe(CN)_6$	368,35	NiCl ₂	129,60
CaO	56,077	KMnO ₄	158,034	NiO	74,69
Cl	35,4527	K ₂ O	94,196	О	15,9994
Co	58,9332	KOH	56,1056	P	30,9738
$Co(NO_3)_2$	182,943	K ₂ SO ₄	174,26	P_2O_5	141,945
CoO	74,933	La	138,906	Pb	207,2
Cr	51,996	Li ₂ CO ₃	73,891	S	32,066
Cu	63,546	Mg	24,3050	Se	78,96
CuCl	98,999	MgCO ₃	84,314	Sn	118,71
CuCl ₂	134,452	MgO	40,304	SrCO ₃	147,63
F	18,9984	Mn	54,938	U	238,029
Fe	55,847	MnO ₂	86,9368	W	183,85
FeCl ₃	162,206	N	14,0067	Zn	65,39
Fe ₂ O ₃	159,69	NH ₃	17,0305	ZnO	81,39

ОГЛАВЛЕНИЕ

1. Концентрации растворов и закон эквивалентов	3
2. Кислотно-основное титрование	
2.1. Теоретические основы и примеры решения	9
2.2. Задачи для самостоятельного решения	18
3. Окислительно-восстановительное титрование	
3.1. Теоретические основы и примеры решения	28
3.2. Задачи для самостоятельного решения	33
4. Комплексонометрическое титрование	
4.1. Теоретические основы и примеры решения	44
4.2. Задачи для самостоятельного решения	49
5. Осадительное титрование	
5.1. Теоретические основы и примеры решения	59
5.2. Задачи для самостоятельного решения	62
Библиографический список	70
Приложение.	
Таблица П1. Молярные массы некоторых веществ	71